244 resultados para Coral reef sponges
Resumo:
We tested the effect of near-future CO2 levels (= 490, 570, 700, and 960 µatm CO2) on the olfactory responses and activity levels of juvenile coral trout, Plectropomus leopardus, a piscivorous reef fish that is also one of the most important fisheries species on the Great Barrier Reef, Australia. Juvenile coral trout reared for 4 weeks at 570 µatm CO2 exhibited similar sensory responses and behaviors to juveniles reared at 490 µatm CO2 (control). In contrast, juveniles reared at 700 and 960 µatm CO2 exhibited dramatically altered sensory function and behaviors. At these higher CO2 concentrations, juveniles became attracted to the odor of potential predators, as has been observed in other reef fishes. They were more active, spent less time in shelter, ventured further from shelter, and were bolder than fish reared at 490 or 570 µatm CO2. These results demonstrate that behavioral impairment of coral trout is unlikely if pCO2 remains below 600 µatm; however, at higher levels, there are significant impacts on juvenile performance that are likely to affect survival and energy budgets, with consequences for predator-prey interactions and commercial fisheries.
Resumo:
Concerns about the impacts of ocean acidification on marine life have mostly focused on how reduced carbonate saturation affects calcifying organisms. Here, we show that levels of CO2-induced acidification that may be attained by 2100 could also have significant effects on marine organisms by reducing their aerobic capacity. The effects of temperature and acidification on oxygen consumption were tested in 2 species of coral reef fishes, Ostorhinchus doederleini and O. cyanosoma, from the Great Barrier Reef, Australia. The capacity for aerobic activity (aerobic scope) declined at temperatures above the summer average (29°C) and in CO2-acidified water (pH 7.8 and ~1000 ppm CO2) compared to control water (pH 8.15). Aerobic scope declined by 36 and 32% for O. doederleini and O. cyanosoma at temperatures between 29 to 32°C, whereas it declined by 33 and 47% for O. doederleini and O. cyanosoma in acidified water compared to control water. Thus, the declines in aerobic scope in acidified water were similar to those caused by a 3°C increase in water temperature. Minimum aerobic scope values of ~200 mg O2 kg-1 h-1 were attained for both species in acidified water at 32°C, compared with over 600 mg O2 kg-1 h-1 in control water at 29°C. Mortality rate increased sharply at 33°C, indicating that this temperature is close to the lethal thermal limit for both species. Acidification further increased the mortality rate of O. doederleini, but not of O. cyanosoma. These results show that coral reef fishes are sensitive to both higher temperatures and increased levels of dissolved CO2, and that the aerobic performance of some reef fishes could be significantly reduced if climate change continues unabated.
Resumo:
Only about half of all the CO_2 that has been produced by the burning of fossil fuels now remains in the atmosphere. The CO_2 "missing" from the atmosphere is the subject of an important debate. It was thought that the great majority of the missing CO_2 has invaded the ocean, for this system naturally acts as a giant chemical regulator of the atmosphere. Although it is clear that ocean processes have a major role in the regulation of the carbon dioxide content of the atmosphere through air-sea exchange processes, recent studies of the oceanic carbon cycle and air-sea interaction indicate that oceanic carbon is in a quasi-steady state via the system of biological and physical processes in the ocean interior. It is difficult to determine whether the ocean has the capacity to take up the increasing air-born CO_2 released by human activities over the past five or six decades. To understand this enigma, we need a better understanding of the natural variability of the oceanic carbon cycle.
Resumo:
Space competition between corals and seaweeds is an important ecological process underlying coral-reef dynamics. Processes promoting seaweed growth and survival, such as herbivore overfishing and eutrophication, can lead to local reef degradation. Here, we present the case that increasing concentrations of atmospheric CO2 may be an additional process driving a shift from corals to seaweeds on reefs. Coral (Acropora intermedia) mortality in contact with a common coral-reef seaweed (Lobophora papenfussii) increased two- to threefold between background CO2 (400 ppm) and highest level projected for late 21st century (1140 ppm). The strong interaction between CO2 and seaweeds on coral mortality was most likely attributable to a chemical competitive mechanism, as control corals with algal mimics showed no mortality. Our results suggest that coral (Acropora) reefs may become increasingly susceptible to seaweed proliferation under ocean acidification, and processes regulating algal abundance (e.g. herbivory) will play an increasingly important role in maintaining coral abundance.
Resumo:
The objective of this study was to investigate whether a tipping point exists in the calcification responses of coral reef calcifiers to CO2. We compared the effects of six partial pressures of CO2 (PCO2) from 28 Pa to 210 Pa on the net calcification of four corals (Acropora pulchra, Porites rus, Pocillopora damicornis, and Pavona cactus), and four calcified algae (Hydrolithon onkodes, Lithophyllum flavescens, Halimeda macroloba, and Halimeda minima). After 2 weeks of acclimation in a common environment, organisms were incubated in 12 aquaria for 2 weeks at the targeted PCO2 levels and net calcification was quantified. All eight species calcified at the highest PCO2 in which the calcium carbonate aragonite saturation state was ~1. Calcification decreased linearly as a function of increasing partial PCO2 in three corals and three algae. Overall, the decrease in net calcification as a function of decreasing pH was ~10% when ambient PCO2 (39 Pa) was doubled. The calcification responses of P. damicornis and H. macroloba were unaffected by increasing PCO2. These results are inconsistent with the notion that coral reefs will be affected by rising PCO2 in a response characterized by a tipping point. Instead, our findings combined among taxa suggest a gradual decline in calcification will occur, but this general response includes specific cases of complete resistance to rising PCO2. Together our results suggest that the overall response of coral reef communities to ocean acidification will be monotonic and inversely proportional to PCO2, with reef-wide responses dependent on the species composition of calcifying taxa.
Resumo:
Some predictions of how ocean acidification (OA) will affect coral reefs assume a linear functional relationship between the ambient seawater aragonite saturation state (Omega a) and net ecosystem calcification (NEC). We quantified NEC in a healthy coral reef lagoon in the Great Barrier Reef during different times of the day. Our observations revealed a diel hysteresis pattern in the NEC versus Omega a relationship, with peak NEC rates occurring before the Omega a peak and relatively steady nighttime NEC in spite of variable Omega a. Net ecosystem production had stronger correlations with NEC than light, temperature, nutrients, pH, and Omega a. The observed hysteresis may represent an overlooked challenge for predicting the effects of OA on coral reefs. If widespread, the hysteresis could prevent the use of a linear extrapolation to determine critical Omega a threshold levels required to shift coral reefs from a net calcifying to a net dissolving state.
Resumo:
Carbon dioxide concentrations in the surface ocean are increasing owing to rising CO2 concentrations in the atmosphere. Higher CO2 levels are predicted to affect essential physiological processes of many aquatic organisms, leading to widespread impacts on marine diversity and ecosystem function, especially when combined with the effects of global warming. Yet the ability for marine species to adjust to increasing CO2 levels over many generations is an unresolved issue. Here we show that ocean conditions projected for the end of the century (approximately 1,000 µatm CO2 and a temperature rise of 1.5-3.0 °C) cause an increase in metabolic rate and decreases in length, weight, condition and survival of juvenile fish. However, these effects are absent or reversed when parents also experience high CO2 concentrations. Our results show that non-genetic parental effects can dramatically alter the response of marine organisms to increasing CO2 and demonstrate that some species have more capacity to acclimate to ocean acidification than previously thought.
Resumo:
1. With the global increase in CO2 emissions, there is a pressing need for studies aimed at understanding the effects of ocean acidification on marine ecosystems. Several studies have reported that exposure to CO2 impairs chemosensory responses of juvenile coral reef fishes to predators. Moreover, one recent study pointed to impaired responses of reef fish to auditory cues that indicate risky locations. These studies suggest that altered behaviour following exposure to elevated CO2 is caused by a systemic effect at the neural level. 2. The goal of our experiment was to test whether juvenile damselfish Pomacentrus amboinensis exposed to different levels of CO2 would respond differently to a potential threat, the sight of a large novel coral reef fish, a spiny chromis, Acanthochromis polyancanthus, placed in a watertight bag. 3. Juvenile damselfish exposed to 440 (current day control), 550 or 700 µatm CO2 did not differ in their response to the chromis. However, fish exposed to 850 µatm showed reduced antipredator responses; they failed to show the same reduction in foraging, activity and area use in response to the chromis. Moreover, they moved closer to the chromis and lacked any bobbing behaviour typically displayed by juvenile damselfishes in threatening situations. 4. Our results are the first to suggest that response to visual cues of risk may be impaired by CO2 and provide strong evidence that the multi-sensory effects of CO2 may stem from systematic effects at the neural level.
Resumo:
To identify the properties of taxa sensitive and resistant to ocean acidification (OA), we tested the hypothesis that coral reef calcifiers differ in their sensitivity to OA as predictable outcomes of functional group alliances determined by conspicuous traits. We contrasted functional groups of eight corals and eight calcifying algae defined by morphology in corals and algae, skeletal structure in corals, spatial location of calcification in algae, and growth rate in corals and algae. The responses of calcification to OA were unrelated to morphology and skeletal structure in corals; they were, however, affected by growth rate in corals and algae (fast calcifiers were more sensitive than slow calcifiers), and by the site of calcification and morphology in algae. Species assemblages characterized by fast growth, and for algae, also cell-wall calcification, are likely to be ecological losers in the future ocean. This shift in relative success will affect the relative and absolute species abundances as well as the goods and services provided by coral reefs.