17 resultados para Comparison between methods of analysis


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Bedforms such as dunes and ripples are ubiquitous in rivers and coastal seas, and commonly described as triangular shapes from which height and length are calculated to estimate hydrodynamic and sediment dynamic parameters. Natural bedforms, however, present a far more complicated morphology; the difference between natural bedform shape and the often assumed triangular shape is usually neglected, and how this may affect the flow is unknown. This study investigates the shapes of natural bedforms and how they influence flow and shear stress, based on four datasets extracted from earlier studies on two rivers (the Rio Paraná in Argentina, and the Lower Rhine in The Netherlands). The most commonly occurring morphological elements are a sinusoidal stoss side made of one segment and a lee side made of two segments, a gently sloping upper lee side and a relatively steep (6 to 21°) slip face. A non-hydrostatic numerical model, set up using Delft3D, served to simulate the flow over fixed bedforms with various morphologies derived from the identified morphological elements. Both shear stress and turbulence increase with increasing slip face angle and are only marginally affected by the dimensions and positions of the upper and lower lee side. The average slip face angle determined from the bed profiles is 14°, over which there is no permanent flow separation. Shear stress and turbulence above natural bedforms are higher than above a flat bed but much lower than over the often assumed 30° lee side angle.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Today the deep western boundary current (DWBC) east of New Zealand is the most important route for deep water entering the Pacific Ocean. Large-scale changes in deep water circulation patterns are thought to have been associated with the development of the East Antarctic Ice Sheet (EAIS) close to the main source of bottom water for the DWBC. Here we reconstruct the changing speed of the southwest Pacific DWBC during the middle Miocene from ~15.5-12.5 Ma, a period of significant global ice accumulation associated with EAIS growth. Sortable silt mean grain sizes from Ocean Drilling Program Site 1123 reveal variability in the speed of the Pacific inflow on the timescale of the 41 kyr orbital obliquity cycle. Similar orbital period flow changes have recently been demonstrated for the Pleistocene epoch. Collectively, these observations suggest that a strong coupling between changes in the speed of the deep Pacific inflow and high-latitude climate forcing may have been a persistent feature of the global thermohaline circulation system for at least the past 15 Myr. Furthermore, long-term changes in flow speed suggest an intensification of the DWBC under an inferred increase in Southern Component Water production. This occurred at the same time as decreasing Tethyan outflow and major EAIS growth between ~15.5 and 13.5 Ma. These results provide evidence that a major component of the deep thermohaline circulation was associated with the middle Miocene growth of the EAIS and support the view that this time interval represents an important step in the development of the Neogene icehouse climate.