132 resultados para Cold formability
Resumo:
The influence of microhabitat type on the diversity and community structure of the harpacticoid copepod fauna associated with a cold-water coral degradation zone was investigated in the Porcupine Seabight (North-East Atlantic). Three substrate types were distinguished: dead fragments of the cold-water coral Lophelia pertusa, skeletons of the glass sponge Aphrocallistes bocagei and the underlying sediment. At the family level, it appears that coral fragments and underlying sediment do not harbour distinctly diVerent assemblages, with Ectinosomatidae, Ameiridae, Pseudotachidiidae, Argestidae and Miraciidae as most abundant. Conclusions on assemblage structure and diversity of the sponge skeletons are limited as only two samples were available. Similarity analysis at species level showed a strong variation in the sediment samples, which did not harbour a distinctly different assemblage in opposition to the coral and sponge samples. Several factors (sediment infill on the hard substrates, mobility of the copepods, limited sample sizes) are proposed to explain this apparent lack of a distinct difference between the microhabitats. Coral fragments and sediment were both characterised by high species diversity and low species dominance, which might indicate that copepod diversity is not substantially influenced by hydrodynamic stress. The additive partitioning of species diversity showed that by adding locations species richness was greatly enhanced. The harpacticoid community in the cold-water coral degradation zone is highly diverse and includes 157 species, 62 genera and 19 families. Information from neighbouring soft-bottom regions is necessary to assess whether total species diversity is increased by the presence of these complex habitatproviding substrates.
Resumo:
The HERMES cold-water coral database is a combination of historical and published sclerectinia cold-water coral occurrences (mainly Lophelia pertusa) and new records of the HERMES project along the European margin. This database will be updated if new findings are reported. New or historical data can be sent to Ben De Mol (mailto:bendemol@ub.edu). Besides geocodes a second category indicates the coral species and if they are sampled alive or dead. If absolute dating is available of the corals this is provide together with the method. Only the framework building cold-water corals are selected: Lophelia pertusa, Madrepora oculata and common cold-water corals often associated with the framework builders like: Desmophyllum sp and Dendrophylia sp. in comments other observed corals are indicated. Another field indicates if the corals are part of a large build-up or solitary. A third category of parameters is referencing to the quality of the represented data. In this category are the following parameters indicated: source of reference, source type (such as Fishermen location, scientific paper, cruise reports). sample code and or name and sample type (e.g. rock dredge, grab, video line). These parameters must allow an assessment of the quality of the described parameters.
Resumo:
The giant pockmark REGAB (West African margin, 3160 m water depth) is an active methane-emitting cold seep ecosystem, where the energy derived from microbially mediated oxidation of methane supports high biomass and diversity of chemosynthetic communities. Bare sediments interspersed with heterogeneous chemosynthetic assemblages of mytilid mussels, vesicomyid clams and siboglinid tubeworms form a complex seep ecosystem. To better understand if benthic bacterial communities reflect the patchy distribution of chemosynthetic fauna, all major chemosynthetic habitats at REGAB were investigated using an interdisciplinary approach combining porewater geochemistry, in situ quantification of fluxes and consumption of methane, as well bacterial community fingerprinting. This study revealed that sediments populated by different fauna assemblages show distinct biogeochemical activities and are associated with distinct sediment bacterial communities. The methane consumption and methane effluxes ranged over one to two orders of magnitude across habitats, and reached highest values at the mussel habitat, which hosted a different bacterial community compared to the other habitats. Clam assemblages had a profound impact on the sediment geochemistry, but less so on the bacterial community structure. Moreover, all clam assemblages at REGAB were restricted to sediments characterized by complete methane consumption in the seafloor, and intermediate biogeochemical activity. Overall, variations in the sediment geochemistry were reflected in the distribution of both fauna and microbial communities; and were mostly determined by methane flux.
Resumo:
Radiocarbon and uranium-thorium dating results are presented from a genus of calcitic Antarctic cold-water octocorals (family Coralliidae), which were collected from the Marie Byrd Seamounts in the Amundsen Sea (Pacific sector of the Southern Ocean) and which to date have not been investigated geochemically. The geochronological results are set in context with solution and laser ablation-based element/Ca ratios (Li, B, Mg, Mn, Sr, Ba, U, Th). Octocoral radiocarbon ages on living corals are in excellent agreement with modern ambient deep-water D14C, while multiple samples of individual fossil coral specimens yielded reproducible radiocarbon ages. Provided that local radiocarbon reservoir ages can be derived for a given time, fossil Amundsen Sea octocorals should be reliably dateable by means of radiocarbon. In contrast to the encouraging radiocarbon findings, the uranium-series data are more difficult to interpret. The uranium concentration of these calcitic octocorals is an order of magnitude lower than in the aragonitic hexacorals that are conventionally used for geochronological investigations. While modern and Late Holocene octocorals yield initial d234U in good agreement with modern seawater, our results reveal preferential inward diffusion of dissolved alpha-recoiled 234U and its impact on fossil coral d234U. Besides alpha-recoil related 234U diffusion, high-resolution sampling of two fossil octocorals further demonstrates that diagenetic uranium mobility has offset apparent coral U-series ages. Combined with the preferential alpha-recoil 234U diffusion, this process has prevented fossil octocorals from preserving a closed system U-series calendar age for longer than a few thousand years. Moreover, several corals investigated contain significant initial thorium, which cannot be adequately corrected for because of an apparently variable initial 232Th/230Th. Our results demonstrate that calcitic cold-water corals are unsuitable for reliable U-series dating. Mg/Ca ratios within single octocoral specimens are internally strikingly homogeneous, and appear promising in terms of their response to ambient temperature. Magnesium/lithium ratios are significantly higher than usually observed in other deep marine calcifiers and for many of our studied corals are remarkably close to seawater compositions. Although this family of octocorals is unsuitable for glacial deep-water D14C reconstructions, our findings highlight some important differences between hexacoral (aragonitic) and octocoral (calcitic) biomineralisation. Calcitic octocorals could still be useful for trace element and some isotopic studies, such as reconstruction of ambient deep water neodymium isotope composition or pH, via boron isotopic measurements.
Resumo:
High-precision uranium-thorium mass spectrometric chronology and 18O-13C isotopic analysis of speleothem calcite from Cold Water Cave in northeast Iowa have been used to chart mid-Holocene climate change. Significant shifts in d18O and d13C isotopic values coincide with well-documented Holocene vegetation changes. Temperature estimates based on 18O/16O ratios suggest that the climate warmed rapidly by about 3°C at 5900 years before present and then cooled by 4°C at 3600 years before present. Initiation of a gradual increase in ?d13C at 5900 years before present suggests that turnover of the forest soil biomass was slow and that equilibrium with prairie vegetation was not attained by 3600 years before present.
Resumo:
Cold seep ecosystems are highly productive, fragmented ecosystems of the deep-sea floor. They form worldwide where methane reaches the surface seafloor, and are characterized by rich chemosynthetic communities fueled by the microbial utilization of hydrocarbons. Here we investigated with in situ (benthic chamber, microprofiler) and ex situ (pore water constituents, turnover rates of sulfate and methane, prokaryote abundance) techniques reduced sites from three different seep ecosystems in the Eastern Mediterranean deep-sea. At all three cold seep systems, the Amon Mud Volcano, Amsterdam Mud Volcano and the Nile Deep Sea Fan Pockmark area, we observed and sampled patches of highly reduced, methane-seeping sulfidic sediments which were separated by tens to hundreds of (kilo)meters with non-reduced oxygenated seafloor areas. All investigated seep sites were characterized by gassy, sulfidic sediments of blackish color, of which some were overgrown with thiotrophic bacterial mats. Fluxes of methane and oxygen, as well as sulfate reduction rates varied between the different sites.
Resumo:
Cold-water corals (CWC) are frequently reported from deep sites with locally accelerated currents that enhance seabed food particle supply. Moreover, zooplankton likely account for ecologically important prey items, but their contribution to CWC diet remains unquantified. We investigated the benthic food web structure of the recently discovered Santa Maria di Leuca (SML) CWC province (300 to 1100 m depth) located in the oligotrophic northern Ionian Sea. We analyzed stable isotopes (delta13C and delta15N) of the main consumers (including ubiquitous CWC species) exhibiting different feeding strategies, zooplankton, suspended particulate organic matter (POM) and sedimented organic matter (SOM). Zooplankton and POM were collected 3 m above the coral colonies in order to assess their relative contributions to CWC diet. The delta15N of the scleractinians Desmophyllum dianthus, Madrepora oculata and Lophelia pertusa and the gorgonian Paramuricea cf. macrospinawere consistent with a diet mainly composed of zooplankton. The antipatharian Leiopathes glaberrima was more 15N- depletedthan other cnidarians, suggesting a lower contribution of zooplankton to its diet. Our delta13C data clearly indicate that the benthic food web of SML is exclusively fuelled by carbon of phytoplanktonic origin. Nevertheless, consumers feeding at the water sediment interface were more 13C-enriched than consumers feeding above the bottom (i.e. living corals and their epifauna). This pattern suggests that carbon is assimilated via 2 trophic pathways: relatively fresh phytoplanktonic production for 13C-depleted consumers and more decayed organic matter for 13C-enriched consumers. When the delta13C values of consumers were corrected for the influence of lipids (which are significantly 13C-depleted relative to other tissue components), our conclusions remained unchanged, except in the case of L. glaberrima which could assimilate a mixture of zooplankton and resuspended decayed organic matter.