65 resultados para Coastal Monitoring. Geodesy. DEM. LiDAR


Relevância:

100.00% 100.00%

Publicador:

Resumo:

During summer seasons (from 2012 to 2015) high resolution observation were performed in the Civitavecchia coastal area (Northern Tyrrhenian sea, west coast). All sampling was carried out from a small boat (5m rigid inflatable) starting in the early morning typically around 06:00 a.m. , and lasting from 2 to 8 h, depending on the weather conditions. The purposes of the experiment was to observe the variations of both the coastal circulation and the water column in response to rotation of 180 ° in the wind direction. During surveys both current measurements and yo-yo time series were performed. Current data were acquired using an ADCP SonTeck (500 Khz, sampling interval from 20sec to 60 sec, average interval 50% sampling, cell thickness 1 meter) and the yo-yo time series employing a small instrument package (CTD). The CTD contained an Idronaut 316 Plus and a SeaPoint fluorometer. The sampling rate for the CTD was 10Hz, profiling with the CTD was done by allowing the instrument package to free-fall, at an average descent rate of 1 m/s. During the summer 2012, the sampling plan consisted in four stations spaced a quarter of a mile (St. 1 - 10 m; St. 2 - 20 m; St. 3 - 30 m; and St. 4 - 40 m), in which yo-yo time series were performed with an interval of 20 min. In order to study fluorescence of Chlorophyll a pathes distribution in coastal zone. Breeze induced circulation was the goal of the following summers surveys, in these current measurements and yo-yo time series were performed moored at a depth of 40 m. Offshore station (St. 1 -40m) has been chosen to perform measurement, basis of previously observations (2012 sampling surveys). It was decided as wind driven circulation and mixing phenomena are less influenced by seabed than the other stations. Acquired data have been processed by NEMO SeaDataNet software.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Bottom pressure, tilt and seawater physical-properties were monitored for a year using two instruments within the immerged Santorini caldera (Greece). Piggy-backed on the CALDERA2012 cruise, this geodetic experiment was designed to monitor evolution of the 2011-2012 Santorini unrest. Conducted during a quiescent period, it allowed us to study oceanographic and atmospheric signal in our data series. We observe periodic oceanographic signals associated with tides, and seiches that are likely linked to both the caldera and Cretan basin geometries. In winter, the caldera witnesses sudden cooling events that tilt an instrument towards the Southeast, indicating cold-water influx likely originating from the north-western passage between Thirasia and Oia. We do not obtain evidence of long-term vertical seafloor deformation from the pressure signal, although it may be masked by instrumental drift. However, tilt data suggests a local seafloor tilt event ~1 year after the end of the unrest period which could be consistent with inflation under or near Nea Kameni. Seafloor geodetic data recorded at the bottom of the Santorini caldera illustrates that the oceanographic signature is an important part of the signal, which needs to be considered for monitoring volcanic or geological seafloor deformation in shallow-water and/or nearshore areas.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The classification of airborne lidar data is a relevant task in different disciplines. The information about the geometry and the full waveform can be used in order to classify the 3D point cloud. In Wadden Sea areas the classification of lidar data is of main interest for the scientific monitoring of coastal morphology and habitats, but it becomes a challenging task due to flat areas with hardly any discriminative objects. For the classification we combine a Conditional Random Fields framework with a Random Forests approach. By classifying in this way, we benefit from the consideration of context on the one hand and from the opportunity to utilise a high number of classification features on the other hand. We investigate the relevance of different features for the lidar points in coastal areas as well as for the interaction of neighbouring points.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Baltic Sea is a semi-enclosed sea with a steady salinity gradient (3 per mil-30 per mil). Organisms have adapted to such low salinities, but are suspected to be more susceptible to stress. Within the frame of the integrated environmental monitoring BONUS + project "BEAST" the applicability of immune responses of the blue mussel was investigated in Danish coastal waters. The sampling sites were characterised by a salinity range (11-19 per mil) and different mixtures of contaminants (metals, PAHs and POPs), according to chemical analysis of mussel tissues. Variation partitioning (redundancy analysis) was applied to decompose salinity and contamination effects. The results indicated that cellular immune responses (total and differential haemocyte count, phagocytic activity and apoptosis) were mainly influenced by contaminants, whereas humoral factors (haemolytic activity) were mainly impacted by salinity. Hence, cellular immune functions may be suitable as biomarkers in monitoring programmes for the Baltic Sea and other geographic regions with salinity variances of the studied range.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Tayrona National Natural Park (TNNP; 11°17' - 11°22' N and 73°53' - 74°12' W) is a hotspot of coral reef biodiversity in the Colombian Caribbean, located between the city of Santa Marta (>455,000 inhabitants) and several smaller river mouths (Rio Piedras, Mendihuaca, Guachaca). The region experiences a strong seasonal variation in physical parameters (temperature, salinity, wind, and water currents) due to alternating dry seasons with coastal upwelling and rainy seasons. Here, a range of water quality parameters relevant for coral reef functioning is provided. Water quality was measured directly above local coral reefs (~10 m water depth) by a monthly monitoring for up to 25 months in the four TNNP bays (Chengue, Gayraca, Neguanje, and Cinto) and at sites with different degree of exposition to winds, waves and water currents (exposed vs. sheltered sites) within each bay. The water quality parameters include: inorganic nutrient (nitrate, nitrite and soluble reactive phosphorus), chlorophyll a, particulate organic carbon and nitrogen concentrations (with a replication of n=3) as well as oxygen availability, biological oxygen demand, seawater pH, and water clarity (with a replication of n=4). This is by far the most comprehensive coral reefs water quality dataset for the region. A detailed description of the methods can be found within the referenced publications.