155 resultados para Catilina, Lucio Sergio, 108-62 a.C


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Ocean Drilling Program Site 658, cored below a major upwelling cell offshore Cap Blanc, contains a largely undisturbed hemipelagic sediment section spanning the Brunhes Chron and the early Quaternary and late Pliocene. The companion Site 659 recovered a complete and undisturbed Neogene profile further offshore that serves as a nonupwelling pelagic reference section. Oxygen and carbon isotope ratios in benthic (C. wuellerstorfi and in part Uvigerina sp.) and planktonic foraminifers (G. inflata) provide a climatic record of high resolution for the Brunhes Chron. At Site 658 the record extends back to the early Pleistocene and late Pliocene. The standard oxygen isotope record of the last 730,000 yr is markedly refined by a well-documented high-frequency variation (e.g., by a new "aborted" ice age at stage 13.2 and by Younger-Dryas style climatic setbacks during most terminations). In the late Pliocene, the numerical oxygen isotope stage taxonomy was extended back to stage 137 about 3.3 Ma ago. In comparison with published records, stage 114 at 2.7 Ma represents the first major glaciation event, when 18O was short-term enriched up to a middle Pleistocene glacial d18O level. About 3.17 Ma ago (stage 133), the interglacial oxygen isotope values of C. wuellerstorfi started to increase by 0.5 per mil until 2.7 Ma and then remained largely constant until the Holocene. Based on the d13C difference between C. wuellerstorfi and G. inflata, the dissolved CO2 in the ambient bottom water of Site 658 was dominated by the flux of particulate carbon from the overlying upwelling cell during the last 630,000 yr. In contrast, the advection of (upper) North Atlantic Bottom Water dominated in the control of the local CO2 content during the early Pleistocene and late Pliocene.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A sediment core from the West Spitsbergen continental margin was studied to reconstruct climate and paleoceanographic variability during the last ~9 ka in the eastern Fram Strait. Our multiproxy evidence suggests that the establishment of the modern oceanographic configuration in the eastern Fram Strait occurred stepwise, in response to the postglacial sea-level rise and the related onset of modern sea-ice production on the shallow Siberian shelves. The late Early and Mid Holocene interval (9 to 5 ka) was generally characterized by relatively unstable conditions. High abundance of the subpolar planktic foraminifer species Turborotalita quinqueloba implies strong intensity of Atlantic Water (AW) inflow with high productivity and/or high AW temperatures, resulting in a strong heat flux to the Arctic. A series of short-lived cooling events (8.2, 6.9. and 6.1 ka) occurred superimposed on the warm late Early and Mid Holocene conditions. Our proxy data imply that simultaneous to the complete postglacial flooding of Arctic shallow shelves and the initiation of modern sea-ice production, strong advance of polar waters initiated modern oceanographic conditions in the eastern Fram Strait at ~5.2 ka. The Late Holocene was marked by the dominance of the polar planktic foraminifer species Neogloboquadrina pachyderma, a significant expansion of sea ice/icebergs, and strong stratification of the water column. Although planktic foraminiferal assemblages as well as sea surface and subsurface temperatures suggest a return of slightly strengthened advection of subsurface Atlantic Water after 3 ka, a relatively stable cold-water layer prevailed at the sea surface and the study site was probably located within the seasonally fluctuating marginal ice zone during the Neoglacial period.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Cretaceous sediments were recovered at all four sites (Sites 463-466) of the central North Pacific drilled during Leg 62 of the Deep Sea Drilling Project. One of the objectives was to get more information about the development of ocean plankton communities and early evolution of planktonic groups of the Mesozoic. In this article, the Cretaceous calcareous nannofossils from two areas of the central North Pacific (Mid-Pacific Mountains and Hess Rise) are listed and discussed. (The Cenozoic calcareous nannofossils are discussed by R. Schmidt 1981). Coring was continuous at all sites. Mesozoic calcareous nannoplankton assemblages range on the Mid-pacific Mountains from Barremian to Early Maastrichtian, and on Hess Rise from Albian to Late Maastrichtian. (No calcareous nannofossils older than Barremian or Albian respectively were found).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Pliocene vegetation dynamics and climate variability in West Africa have been investigated through pollen and XRF-scanning records obtained from sediment cores of ODP Site 659 (18°N, 21°W). The comparison between total pollen accumulation rates and Ti/Ca ratios, which is strongly correlated with the dust input at the site, showed elevated aeolian transport of pollen during dusty periods. Comparison of the pollen records of ODP Site 659 and the nearby Site 658 resulted in a robust reconstruction of West African vegetation change since the Late Pliocene. Between 3.6 and 3.0 Ma the savannah in West Africa differed in composition from its modern counterpart and was richer in Asteraceae, in particular of the Tribus Cichorieae. Between 3.24 and 3.20 Ma a stable wet period is inferred from the Fe/K ratios, which could stand for a narrower and better specified mid-Pliocene (mid-Piacenzian) warm time slice. The northward extension of woodland and savannah, albeit fluctuating, was generally greater in the Pliocene. NE trade wind vigour increased intermittently around 2.7 and 2.6 Ma, and more or less permanently since 2.5 Ma, as inferred from increased pollen concentrations of trade wind indicators (Ephedra, Artemisia, Pinus). Our findings link the NE trade wind development with the intensification of the Northern Hemisphere glaciations (iNHG). Prior to the iNHG, little or no systematic relation could be found between sea surface temperatures of the North Atlantic with aridity and dust in West Africa.