19 resultados para Carolus Linnaeus
Resumo:
Rising atmospheric CO2-concentrations will have severe consequences for a variety of biological processes. We investigated the responses of the green alga Ulva lactuca (Linnaeus) to rising CO2-concentrations in a rockpool scenario. U. lactuca was cultured under aeraton with air containing either preindustrial pCO2 (280µatm) or for the end of the 21st century predicted (700µatm) pCO2 for 31 days. We addressed the following question: Will elevated CO2-concentrations affect photosynthesis (net photosynthesis, rETR(max), Fv/Fm, pigment composition) and growth of U. lactuca in rockpools with limited water exchange? Two phases of the experiment were distinguished: In the initial phase (day 1-4) the Seawater Carbonate System (SWCS) of the culture medium could be adjusted to the selected atmospheric pCO2 condition by continuous aeration with target pCO2 values. In the second phase (day 4-31) the SWCS was largely determined by the metabolism of the growing U. lactuca biomass. In the initial phase, Fv/Fm and rETR(max) were only slightly elevated at high CO2-concentrations whereas growth was significantly enhanced. After 31 days the Chl a content of the thalli was significantly lower under future conditions and the photosynthesis of thalli grown under preindustrial conditions was not dependent on external carbonic anhydrase. Biomass increased significantly at high CO2-concentrations. At low CO2-concentrations most adult thalli disintegrated between day 14 and 21, whereas at high CO2-concentrations most thalli remained integer until day 31. Thallus disintegration at low CO2-concentrations was mirrored in a drastic decline in seawater DIC and HCO3-. Accordingly, the SWCS differed significantly between the treatments. Our results indicated a slight enhancement of photosynthetic performance and significantly elevated growth of U. lactuca at future CO2-concentrations. The accelerated thallus disintegration at high CO2-concentrations under conditions of limited water exchange indicates additional CO2 effects on the life cycle of U. lactuca when living in rockpools.
Resumo:
While part of a single country, the Indonesian archipelago covers several biogeographic regions, and the high levels of national shipping likely facilitate transfer of non-native organisms between the different regions. Two vessels of a domestic shipping line appear to have served as a transport vector for the Asian green mussel Perna viridis (Linnaeus, 1758) between regions. This species is indigenous in the western but not in the eastern part of the archipelago, separated historically by the Sunda Shelf. The green mussels collected from the hulls of the ferries when in eastern Indonesia showed a significantly lower body condition index than similar-sized individuals from three different western-Indonesian mussel populations. This was presumably due to reduced food supply during the ships' voyages. Although this transportinduced food shortage may initially limit the invasive potential (through reduced reproductive rates) of the translocated individuals, the risk that the species will extend its distributional range further into eastern Indonesia is high. If the species becomes widely established in eastern Indonesia, there will then be an increased risk of incursions to Australia, where the mussel is listed as a high-priority pest species.
Resumo:
The Great Belt, the largest inlet to the Baltic Sea, has a deep and well defined channel system. A distinct thermohaline layer at roughly 18 to 20 m of water depth separates the saltier and generally cooler deeper North Sea water from the brackish and warmer surface water. It is practically a current dominated area, with the strongest bottom currents due to prolonged west winds. The size and shape of the surface sediments and their grain size distributions show a close relationship with the prevailing hydrographical conditions. Southerly current marks predominate while northerly directions are confined to 10 to 14 m of water depth. The degree of bioturbation is highest in the uppermost sedimentary cover where practically all original stratification has been destroyed. Various bioturbate structures have been identified with the fauna. Coiling ratios of Ammonia beccarii (Linnaeus) have been successfully applied for correlation in the postglacial sediments of the early Littorina Transgression. The succession shows that in the Boreal brackish water conditions were probably followed by peat and limnic sediments as the sea regressed. With the Littorina Transgression, the sea again entered the area and high sedimentation rates resulted in the major deposits of the Great Belt. At least for the last 4000 years, sedimentation rates had been very low. Present day currents sweep out the sediments, mainly to the southern marginal areas.