81 resultados para Cap-de-Creus
Resumo:
Between 1999 and 2001, a 724 m long ice core was drilled on Akademii Nauk, the largest glacier on Severnaya Zemlya, Russian Arctic. The drilling site is located near the summit. The core is characterized by high melt-layer content. The melt layers are caused by melting and even by rain during the summer. We present high-resolution data of density, electrical conductivity (dielectrical profiling), stable water isotopes and melt-layer content for the upper 136 m (120 m w.e.) of the ice core. The dating by isotopic cycles and electrical conductivity peak identification suggests that this core section covers approximately the past 275 years. Singularities of volcanogenic and anthropogenic origin provide well-defined additional time markers. Long-term temperatures inferred from 12 year running mean averages of d18O reach their lowest level in the entire record around 1790. Thereafter the d18O values indicate a continuously increasing mean temperature on the Akademii Nauk ice cap until 1935, interrupted only by minor cooling episodes. The 20th century is found to be the warmest period in this record.
Meteorological observations during No. 12 cruise from Cap Francais to Bordeaux started at 1788-07-01
Resumo:
King George Island is located at the northern tip of the Antarctic Peninsula, which is influenced by maritime climate conditions. The observed mean annual air temperature at sea level is -2.4°C. Thus, the ice cap is regarded as sensitive to changing climatic conditions. Ground-penetrating radar surveys indicate a partly temperate ice cap with an extended water layer at the firn/ice transition of the up to 700 m high ice cap. Measured firn temperatures are close to 0°C at the higher elevations, and they differ considerably from the measured mean annual air temperature. The aim of this paper is to present ice-flow dynamics by means of observations and simulations of the flow velocities. During several field campaigns from 1997/98 to 2008/09, ice surface velocities were derived with repeated differential GPS measurements. Ice velocities vary from 0.7 m/a at the dome to 112.1 m/a along steep slopes. For the western part of the ice cap a three-dimensional diagnostic full-Stokes model was applied to calculate ice flow. Parameters of the numerical model were identified with respect to measured ice surface velocities. The simulations indicate cold ice at higher elevations, while temperate ice at lower elevations is consistent with the observations.
Resumo:
During 2007 we launched a geodetic campaign on the Svalbard ice cap Vestfonna in order to estimate the velocity field of the ice cap. This was done within the frame of the IPY project KINNVIKA. We present here the velocity measurements derived from our campaigns 2007-2010 and compare the geodetic measurements against InSAR velocity fields from satellite platforms from 1995/96 and 2008. We find the spatial distribution of ice speeds from the InSAR is in good agreement within the uncertainty limits with our geodetic measurements. We observe no clear indication of seasonal ice speed differences, but we find a speed-up of the outlet glacier Franklinbreen between the InSAR campaigns, and speculate the outlet is having a surge phase.
Resumo:
It is widely recognized that climate change poses significant challenges to the conservation of biodiversity. The need of dealing with relatively rapid and uncertain environmental change calls for the enhancement of adaptive capacity of both biodiversity and conservation management systems. Under the hypothesis that most of the conventional biodiversity conservation tools do not sufficiently stimulate a dynamic protected area management, which takes rapid environmental change into account, we evaluated almost 900 of The Nature Conservancy's site-based conservation action plans. These were elaborated before a so-called climate clinic in 2009, an intensive revision of existing plans and a climate change training of the planning teams. We also compare these results with plans elaborated after the climate clinic. Before 2009, 20% of the CAPs employed the term "climate change" in their description of the site viability, and 45% identified key ecological attributes that are related to climate. 8% of the conservation strategies were directly or indirectly related to climate change adaptation. After 2009, a significantly higher percentage of plans took climate change into account. Our data show that many planning teams face difficulties in integrating climate change in their management and planning. However, technical guidance and concrete training can facilitate management teams learning processes. Arising new tools of adaptive conservation management that explicitly incorporate options for handling future scenarios, vulnerability analyses and risk management into the management process have the potential of further making protected area management more proactive and robust against change.
Resumo:
The chemistry of snow and ice cores from Svalbard is influenced by variations in local sea ice margin and distance to open water. Snow pits sampled at two summits of Vestfonna ice cap (Nordaustlandet, Svalbard), exhibit spatially heterogeneous soluble ions concentrations despite similar accumulation rates, reflecting the importance of small-scale weather patterns on this island ice cap. The snow pack on the western summit shows higher average values of marine ions and a winter snow layer that is relatively depleted in sulphate. One part of the winter snow pack exhibits a [SO4-/Na+] ratio reduced by two thirds compared with its ratio in sea water. This low sulphate content in winter snow is interpreted as the signature of frost flowers, which are formed on young sea ice when offshore winds predominate. Frost flowers have been described as the dominant source of sea salt to aerosol and precipitation in ice cores in coastal Antarctica but this is the first time their chemical signal has been described in the Arctic. The eastern summit does not show any frost flower signature and we interpret the unusually dynamic ice transport and rapid formation of thin ice on the Hinlopen Strait as the source of the frost flowers.