380 resultados para CLATHRATE-HYDRATE


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Leg 164 of the Ocean Drilling Program was designed to investigate the occurrence of gas hydrate in the sedimentary section beneath the Blake Ridge on the southeastern continental margin of North America. Sites 994, 995, and 997 were drilled on the Blake Ridge to refine our understanding of the in situ characteristics of natural gas hydrate. Because gas hydrate is unstable at surface pressure and temperature conditions, a major emphasis was placed on the downhole logging program to determine the in situ physical properties of the gas hydrate-bearing sediments. Downhole logging tool strings deployed on Leg 164 included the Schlumberger quad-combination tool (NGT, LSS/SDT, DIT, CNT-G, HLDT), the Formation MicroScanner (FMS), and the Geochemical Combination Tool (GST). Electrical resistivity (DIT) and acoustic transit-time (LSS/SDT) downhole logs from Sites 994, 995, and 997 indicate the presence of gas hydrate in the depth interval between 185 and 450 mbsf on the Blake Ridge. Electrical resistivity log calculations suggest that the gas hydrate-bearing sedimentary section on the Blake Ridge may contain between 2 and 11 percent bulk volume (vol%) gas hydrate. We have determined that the log-inferred gas hydrates and underlying free-gas accumulations on the Blake Ridge may contain as much as 57 trillion m**3 of gas.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The analyses of downhole log data from Ocean Drilling Program (ODP) boreholes on the Blake Ridge at Sites 994, 995, and 997 indicate that the Schlumberger geochemical logging tool (GLT) may yield useful gas hydrate reservoir data. In neutron spectroscopy downhole logging, each element has a characteristic gamma ray that is emitted from a given neutron-element interaction. Specific elements can be identified by their characteristic gamma-ray signature, with the intensity of emission related to the atomic elemental concentration. By combining elemental yields from neutron spectroscopy logs, reservoir parameters including porosities, lithologies, formation fluid salinities, and hydrocarbon saturations (including gas hydrate) can be calculated. Carbon and oxygen elemental data from the GLT was used to determine gas hydrate saturations at all three sites (Sites 994, 995, and 997) drilled on the Blake Ridge during Leg 164. Detailed analyses of the carbon and oxygen content of various sediments and formation fluids were used to construct specialized carbon/oxygen ratio (COR) fan charts for a series of hypothetical gas hydrate accumulations. For more complex geologic systems, a modified version of the standard three-component COR hydrocarbon saturation equation was developed and used to calculate gas hydrate saturations on the Blake Ridge. The COR-calculated gas hydrate saturations (ranging from about 2% to 14% bulk volume gas hydrate) from the Blake Ridge compare favorably to the gas hydrate saturations derived from electrical resistivity log measurements.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Different types of seep carbonates were recovered from the 'Kouilou pockmarks' on the Congo deep-sea fan in approximately 3100 m water depth. The carbonate aggregates are represented by pyritiferous nodules, crusts and slabs, tubes, and filled molds. The latter are interpreted to represent casts of former burrows of bivalves and holothurians. The nodules consisting of high-Mg-calcite apparently formed deeper within the sediments than the predominantly aragonitic crusts and slabs. Nodule formation was caused by anaerobic oxidation of methane dominantly involving archaea of the phylogenetic ANME-1 group, whereas aragonitic crusts resulted from the activity of archaea of the ANME-2 cluster. Evidence for this correlation is based on the distribution of specific biomarkers in the two types of carbonate aggregates, showing higher hydroxyarchaeol to archaeol ratios in the crusts as opposed to nodules. Formation of crusts closer to the seafloor than nodules is indicated by higher carbonate contents of crusts, probably reflecting higher porosities of the host sediment during carbonate formation. This finding is supported by lower d18O values of crusts, agreeing with precipitation from pore waters similar in composition to seawater. The aragonitic mineralogy of the crusts is also in accord with precipitation from sulfate-rich pore waters similar to seawater. Moreover, the interpretation regarding the relative depth of formation of crusts and nodules agrees with the commonly observed pattern that ANME-1 archaea tend to occur deeper in the sediment than members of the ANME-2 group. Methane represents the predominant carbon source of all carbonates (d13C values as low as -58.9 per mil V-PDB) and the encrusted archaeal biomarkers (d13C values as low as -140 per mil V-PDB). Oxygen isotope values of some nodular carbonates, ranging from + 3.9 to + 5.1per mil V-PDB, are too high for precipitation in equilibrium with seawater, probably reflecting the destabilization of gas hydrates, which are particularly abundant at the Kouilou pockmarks.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Submarine gas hydrates are a major global reservoir of the potent greenhouse gas methane. Since current assessments of worldwide hydrate-bound carbon vary by one order of magnitude, new technical efforts are required for improved and accurate hydrate quantifications. Here we present hydrate abundances determined for surface sediments at the high-flux Batumi seep area in the southeastern Black Sea at 840 m water depth using state-of-the art autoclave technology. Pressure sediment cores of up to 2.65 m in length were recovered with an autoclave piston corer backed by conventional gravity cores. Quantitative core degassing yielded volumetric gas/bulk sediment ratios of up to 20.3 proving hydrate presence. The cores represented late glacial to Holocene hemipelagic sediments with the shallowest hydrates found at 90 cmbsf. Calculated methane concentrations in the different cores surpassed methane equilibrium concentrations in the two lowermost lithological Black Sea units sampled. The results indicated hydrate fractions of 5.2% of pore volume in the sapropelic Unit 2 and mean values of 21% pore volume in the lacustrine Unit 3. We calculate that the studied area of ~ 0.5 km**2 currently contains about 11.3 kt of methane bound in shallow hydrates. Episodic detachment and rafting of such hydrates is suggested by a rugged seafloor topography along with variable thicknesses in lithologies. We propose that sealing by hydrate precipitation in coarse-grained deposits and gas accumulation beneath induces detachment of hydrate/sediment chunks. Floating hydrates will rapidly transport methane into shallower waters and potentially to the sea-atmosphere boundary. In contrast, persistent in situ dissociation of shallow hydrates appears unlikely in the near future as deep water warming by about 1.6 °C and/or decrease in hydrostatic pressure corresponding to a sea level drop of about 130 m would be required. Because hydrate detachment should be primarily controlled by internal factors in this area and in similar hydrated settings, it serves as source of methane in shallow waters and the atmosphere which is mainly decoupled from external forcing.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Gas hydrate samples from various locations in the Gulf of Mexico (GOM) differ considerably in their microstructure. Distinct microstructure characteristics coincide with discrete crystallographic structures, gas compositions and calculated thermodynamic stabilities. The crystallographic structures were established by X-ray diffraction, using both conventional X-ray sources and high-energy synchrotron radiation. The microstructures were examined by cryo-stage Field-Emission Scanning Electron Microscopy (FE-SEM). Good sample preservation was warranted by the low ice fractions shown from quantitative phase analyses. Gas hydrate structure II samples from the Green Canyon in the northern GOM had methane concentrations of 70-80% and up to 30% of C2-C5 of measured hydrocarbons. Hydrocarbons in the crystallographic structure I hydrate from the Chapopote asphalt volcano in the southern GOM was comprised of more than 98% methane. Fairly different microstructures were identified for those different hydrates: Pores measuring 200-400 nm in diameter were present in structure I gas hydrate samples; no such pores but dense crystal surfaces instead were discovered in structure II gas hydrate. The stability of the hydrate samples is discussed regarding gas composition, crystallographic structure and microstructure. Electron microscopic observations showed evidence of gas hydrate and liquid oil co-occurrence on a micrometer scale. That demonstrates that oil has direct contact to gas hydrates when it diffuses through a hydrate matrix.