32 resultados para CHEMICAL STRUCTURES
Resumo:
Mineral and chemical alterations of basalts were studied in the upper part of the ocean crust using data of deep-sea drilling from D/S Glomar Challenger in the main structures of the Pacific floor. Extraction of majority of chemical elements (including heavy metals) from basalts results mainly from their interaction with heated sea water. As a result mineralized hydrothermal solutions are formed. On entering the ocean they influence greatly on ocean sedimentation and ore formation.
Resumo:
The monograph highlights extensive materials collected during expeditions of P.P. Shirshov Institute of Oceanology. We consider facial conditions of nodule formation, regularities of their distribution, stratigraphic position, petrography, mineral composition, textures, geochemistry of nodules and hosting sediments. Origin of iron-manganese nodules in the Pacific Ocean is considered as well.
Resumo:
Chemical composition of the upper layer of sediments (0-1 cm) in the Kolvits and Knazhaya inlets, and also in the deep-water part of the Kandalaksha Bay is considered. It is shown that silts are richer in Fe, TOC, and heavy metals, than sands. The highest concentration of these elements is found in sediments under mixing zones of riverine and sea waters. Correlations of P, Zn, Cd, and Cu with iron are high, and correlations of Pb and Cu with organic carbon are also high. Very high concentration of Pb in the Kandalaksha Bay indicate technogenic pollution of sediments. Lignin makes significant contribution to formation of organic matter in the sediments. Composition of lignin in bottom sediments of the Kandalaksha Bay is defined by composition of lignin in soils and aerosols. Vanillin and syringyl structures prevail in molecular composition of lignin in bottom sediments. Their sources are coniferous vegetations, soils, and mosses. Ratios of certain types of phenol compounds indicate pollution of the upper layer of sediments by technogenic lignin. Lead and copper correlate well with this technogenic lignin.
Resumo:
Ore crusts from the Mid-Pacific Seamounts were studied by scanning electron microscopy and by atomic-absorption and chemical analysis. Characteristic ultramicroscopic structures of ore material of these crusts are globular, fibrous, conchoidal and cellular. Non-ore components are represented by fragments of bedrocks, zeolites, biogenic carbonates, and apatite. Contents of ore elements are: Fe 5.53-15.82%; Mn 14.92-23.45%; Co 0.32-0.82%; Ni 0.22-0.70%; Cu 0.02-0.12%, Mn/Fe ratio varies from 1.02 to 3.39. In general elevated contents of Co (>0.55%) in Fe-Mn crusts correspond to elevated (>1) Mn/Fe ratios.
Resumo:
Calcareous and siliceous biogenic components have been studied in deep-water iron-manganese nodules from the northern and southern Pacific Ocean. Calcareous material consists of foraminifera remains, calcareous algae, and coccolithophorids, whereas siliceous material consists of remains of radiolarians and diatoms, as well as sponge spicules. Structures similar in morphology to coccal and filiform bacteria have been found in both outer and inner sections of the nodules indicating that microorganisms may be directly or indirectly involved in their development.
Resumo:
The monograph summarizes materials on geology and deep structure of the Central Atlantic fracture zones. These materials have been obtained during eight expeditions of R/V ''Akademik Nikolaj Strakhov''. The studies have been based on the integrated geological approach. As a result, many new tectonic, magmatic, metallogenic and historical-geological features of these phenomenal structures of the deep ocean have been revealed.
Resumo:
Microscopic and electron probe examination of some manganese nodules show that they consist of segregations of manganese-iron oxides in an interstitial material almost free of manganese but rich in iron and silicates. The segregations are widely spaced in the volcanic cores of the nodules but become more abundant towards their outer crusts where they form the centres of linked polygons of interstitial materials. Most of the minor elements are concentrated in the segregations compared to the interstitial materials. It is suggested that the structures observed result partly from solution and reprecipitation of elements in the original volcanic cores of the nodules and partly from the replacement and coating of these cores by manganese-iron oxides precipitated from sea water.
Resumo:
Several hydrothermal sulfide structures were sampled using the Mir manned submersibles in the relatively shallow Lucky Strike vent field, Mid-Atlantic Ridge. Bathymetric position of these structures varies by approximately 100 m. Investigation of chemical and mineral compositions of hydrothermal ore occurrences led to the conclusion that the initial high-temperature ore-bearing solution ascending toward the surface became unstable and experienced phase separation beneath the ocean floor. The phase separation was responsible for bathymetric control of hydrothermal ore formation within the field.
Resumo:
Compositions, structures, and microstructures of different types of phosphorites and poorly phosphatized rocks from low atolls in the near-equatorial part of the Western Indian Ocean are described. The rocks were examined under optical and scanning microscopes using microprobe techniques and etching of selected samples with weak solvents as well as with the help of chemical analyses. It is proved that phosphorites have been formed owing to the uneven phosphatization of primary carbonate rocks; degree of their phosphatization ranges from traces to 40% P2O5. In the phosphorites numerous organic remains were encountered; they included fragments of plankton, debris of tortoise shells, and coccoidal and filamentous bacteria-like formations. It is suggested that the phosphorites formed due to high local biological productivity over the outer edges of coral reefs and are not related to guano accumulation or to endoupwelling.
Resumo:
A multidisciplinary oceanographic survey of the White Sea was carried out in the Gorlo Straight, Basin, and Kandalaksha Bay regions including estuaries of Niva, Kolvitza and Knyazhaya rivers. Hydrophysical study in the northern part of the Basin revealed long-lived step-like structures and inversions in vertical profiles of temperature and salinity, which formed due to tidal mixing of saline and cold Barents Sea waters and warmer White Sea waters in the Gorlo Straight. Biological studies revealed the main features of spatial distribution, as well as qualitative and quantitative composition of phyto- and zooplankton in all studied areas; tolerance of main zooplankton species to fresh water influence in estuaries was shown. Study of suspended matter in estuaries clearly demonstrated physicochemical transformations of material supplied by the rivers. Data on vertical particle flux in the deep part of the Kandalaksha Bay showed difference between the upper and near-bottom layers, which could result from sinking of spring phytoplankton bloom products and supply of terrigenic suspended matter from the nepheloid layer formed by tidal currents.
Resumo:
Study of cores taken from the north-eastern Mediterranean during cruise 4/72 of the RRV Shackleton, using a Lehigh 4-inch hydroplastic gravity corer and containing layered organic structures encrusted with either manganese or iron minerals.
Resumo:
The Middle Paleozoic complex consists of terrigenous and volcanogenic materials metamorphized in greenschist facies. Clastic rocks have arkosic composition and are formed by alteration of basalts and metamorphic rocks. Metaeffusives were formed from basaltoid products of oceanic tholeiite magma indicating that underwater rise structures of the northern Sea of Japan were emplaced on the oceanic crust.