144 resultados para Boursault, M. (Edme), 1638-1701.


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background: Studies of oyster microbiomes have revealed that a limited number of microbes, including pathogens, can dominate microbial communities in host tissues such as gills and gut. Much of the bacterial diversity however remains underexplored and unexplained, although environmental conditions and host genetics have been implicated. We used 454 next generation 16S rRNA amplicon sequencing of individually tagged PCR reactions to explore the diversity of bacterial communities in gill tissue of the invasive Pacific oyster Crassostrea gigas stemming from genetically differentiated beds under ambient outdoor conditions and after a multifaceted disturbance treatment imposing stress on the host. Results: While the gill associated microbial communities in oysters were dominated by few abundant taxa (i.e. Sphingomonas, Mycoplasma) the distribution of rare bacterial groups correlated to relatedness between the hosts under ambient conditions. Exposing the host to disturbance broke apart this relationship by removing rare phylotypes thereby reducing overall microbial diversity. Shifts in the microbiome composition in response to stress did not result in a net increase in genera known to contain potentially pathogenic strains. Conclusion: The decrease in microbial diversity and the disassociation between population genetic structure of the hosts and their associated microbiome suggest that disturbance (i.e. stress) may play a significant role for the assembly of the natural microbiome. Such community shifts may in turn also feed back on the course of disease and the occurrence of mass mortality events in oyster populations.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Oceanographic research in the Amvrakikos Gulf in Western Greece, a semi-enclosed embayment isolated from the Ionian Sea by a narrow, shallow sill, has shown that it is characterised by a fjord-like oceanographic regime. The Gulf is characterised by a well-stratified two layer structure in the water column made up of a surface layer and a bottom layer that are separated by a strong pycnocline. At the entrance over the sill, there is a brackish water outflow in the surface water and a saline water inflow in the near-bed region. This morphology and water circulation pattern makes the Amvrakikos Gulf the only Mediterranean Sea fjord. The investigations have also shown that the surface layer is well oxygenated, whereas in the pycnocline, the dissolved oxygen (DO) declines sharply and finally attains a value of zero, thus dividing the water column into oxic, dysoxic and anoxic environments. At the dysoxic/anoxic interface, at a depth of approximately 35 m, a sharp redox cline develops with Eh values between 0 and 120 mV occurring above and values between 0 and -250 mV occurring below, where oxic and anoxic biochemical processes prevail, respectively. On the seafloor underneath the anoxic waters, a black silt layer and a white mat cover resembling Beggiatoa-like cells are formed. The dysoxic/anoxic conditions appeared during the last 20 to 30 years and have been caused by the excessive use of fertilisers, the increase in animal stocks, intensive fish farming and domestic effluents. The inflicted dysoxia/anoxia has resulted in habitat loss on the seafloor over an area that makes up just over 50% of the total Gulf area and approximately 28% of the total water volume. Furthermore, anoxia is also considered to have been responsible for the sudden fish mortality which occurred in aquaculture rafts in the Gulf in February 2008. Therefore, anoxic conditions can be considered to be a potential hazard to the ecosystem and to the present thriving fishing and mariculture industry in the Gulf.