21 resultados para Boulders.


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The quantity, type, and maturity of the organic matter of Quaternary and Tertiary sediments from the Japan Trench (DSDP Leg 56, Sites 434 and 436; and Leg 57, Sites 438, 439 and 440) were determined. The hydrocarbons in lipid extracts were analyzed by capillary- column gas chromatography and combined gas chromatography/ mass spectrometry. Kerogen concentrates were investigated by microscopy, and vitrinite-reflectance values were determined. Measured organic-carbon values were in the range of 0.13 to 1.00 per cent. Extract yields, however, were extremely low. Normalized to organic carbon, total extracts ranged from 4.1 to 15.7 mg/g Corg. Gas chromatography of non-aromatic hydrocarbons showed that all sediments, except one Oligocene sample, contained very immature, mainly terrigenous organic material. This was indicated by n-alkane maxima at C29 and C31 and high odd-carbon-number predominances. Unsaturated steroid hydrocarbons were found to be major cyclic compounds in lower- and middle-Miocene samples from the upper inner trench slope (Sites 438 and 439). Perylene was the dominating aromatic hydrocarbon in all but the Oligocene sample. Microscopy showed kerogens rich in terrigenous organic particles, with a major portion of recycled vitrinite. Nevertheless, almost all the liptinite particles appeared to be primary. This is a paradox, as the bulk of the samples were composed of hemipelagic mineral matter with a major siliceous biogenic (planktonic) component. A trend of reduced size and increased roundness can be seen for the vitrinite/ inertinite particles from west to east (from upper inner trench slope to outer trench slope). All sediments but one are relatively immature, with mean huminite-reflectance values (Ro)in the range of 0.30 to 0.45 per cent. The oldest and deepest sediment investigated, an Oligocene sandstone from Site 439, yielded a mean vitrinitereflectance value of 0.74 per cent and a mature n-alkane distribution. This sample may indicate a geothermal event in late Oligocene time. It failed to affect the overlying lower Miocene and may have been caused by an intrusion. Boulders of acidic igneous rocks in the Oligocene can be interpreted as witnesses of nearby volcanic activity accompanied by intrusions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Geological observations, using "free-diving" techniques (Figure I) were made in September, 1960 and March 1961 along two continuous profiles in the outer Kiel Harbor, Germany and at several other spot locations in the Western Baltic Sea. A distinct terrace, cut in Pleistocene glacial till, was found that was covered with varying amounts and types of recent deposits. Hand samples were taken of the sea-floor sediments and grainsize distribution determined for both the sediment as a whole and for its heavy mineral fraction. From the Laboratory and Field observations it was possible to recognize two distinct types of sand; Type I, Sand resulting from transportation over a long period of time and distance and Type 11, Sand resulting from little transportation and found today near to xvhere it was formed. Several criterea related to the agent of movement could be used to classify the nature of the sediment; (1) undisturbed (the sediment Cover of the Pleistocene Terrace is essentially undisturbed), (2) mixed by organisms, (3) transported by water movements (sediment found with ripple marks, etc., and (4) "Scoured" (the movement of individual particles of sediment from around larger boulders causes a slow downward movement or "Creeping" which is due to both the force of gravity and bottom currents. These observations and laboratory studies are discussed concerning their relationship to the formation of residual sediments, the direction of sand transportation, and the intensive erosion on the outer edge of the wave-cut platform found in this part of the Baltic Sea.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

An area of about 22,000 km² on the northern Blake Plateau, off the coast of South Carolina, contains an estimated 2 billion metric tons of phosphorite concretions, and about 1.2 billion metric tons of mixed ferromanganese-phosphorite pavement. Other offshore phosphorites occur between the Blake Plateau and known continental deposits, buried under variable thicknesses of sediments. The phosphorite resembles other marine phosphorites in composition, consisting primarily of carbonate-fluorapatite, some calcite, minor quartz and other minerals. The apatite is optically pseudo-isotropic and contains about 6% [CO3]**2- replacing [PO4]**3- in its structure. JOIDES drillings and other evidence show that the phosphorite is a lag deposit derived from Miocene strata correlatable with phosphatic Middle Tertiary sediments on the continent. It has undergone variable cycles of erosion, reworking, partial dissolution and reprecipitation. Its present form varies from phosphatized carbonate debris, loose pellets, and pebbles, to continuous pavements, plates, and conglomeratic boulders weighing hundreds of kilograms. No primary phosphatization is currently taking place on the Blake Plateau. The primary phosphate-depositing environment involved reducing conditions and required at least temporary absence of the powerful Gulf Stream current that now sweeps the bottom of the Blake Plateau and has eroded away the bulk of the Hawthorne-equivalent sediments with which the phosphorites were once associated.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Herschel Island in the southern Beaufort Sea is a push moraine at the northwestern-most limit of the Laurentide Ice Sheet. Stable water isotope (d18O, dD) and hydrochemical studies were applied to two tabular massive ground ice bodies to unravel their genetic origin. Buried glacier ice or basal regelation ice was encountered beneath an ice-rich diamicton with strong glaciotectonic deformation structures. The massive ice isotopic composition was highly depleted in heavy isotopes (mean d18O: -33 per mil; mean dD: -258 per mil), suggesting full-glacial conditions during ice formation. Other massive ice of unknown origin with a very large d18O range (from -39 to -21 per mil) was found adjacent to large, striated boulders. A clear freezing slope was present with progressive depletion in heavy isotopes towards the centre of the ice body. Fractionation must have taken place during closed-system freezing, possibly of a glacial meltwater pond. Both massive ground ice bodies exhibited a mixed ion composition suggestive of terrestrial waters with a marine influence. Hydrochemical signatures resemble the Herschel Island sediments that are derived from nearshore marine deposits upthrust by the Laurentide ice. A prolonged contact between water feeding the ice bodies and the surrounding sediment is therefore inferred.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Southern Ocean ecosystem at the Antarctic Peninsula has steep natural environmental gradients, e.g. in terms of water masses and ice cover, and experiences regional above global average climate change. An ecological macroepibenthic survey was conducted in three ecoregions in the north-western Weddell Sea, on the continental shelf of the Antarctic Peninsula in the Bransfield Strait and on the shelf of the South Shetland Islands in the Drake Passage, defined by their environmental envelop. The aim was to improve the so far poor knowledge of the structure of this component of the Southern Ocean ecosystem and its ecological driving forces. It can also provide a baseline to assess the impact of ongoing climate change to the benthic diversity, functioning and ecosystem services. Different intermediate-scaled topographic features such as canyon systems including the corresponding topographically defined habitats 'bank', 'upper slope', 'slope' and 'canyon/deep' were sampled. In addition, the physical and biological environmental factors such as sea-ice cover, chlorophyll-a concentration, small-scale bottom topography and water masses were analysed. Catches by Agassiz trawl showed high among-station variability in biomass of 96 higher systematic groups including ecological key taxa. Large-scale patterns separating the three ecoregions from each other could be correlated with the two environmental factors, sea-ice and depth. Attribution to habitats only poorly explained benthic composition, and small-scale bottom topography did not explain such patterns at all. The large-scale factors, sea-ice and depth, might have caused large-scale differences in pelagic benthic coupling, whilst small-scale variability, also affecting larger scales, seemed to be predominantly driven by unknown physical drivers or biological interactions.