22 resultados para Borderlands
Resumo:
This study presents newly obtained coral ages of the cold-water corals Lophelia pertusa and Madrepora oculata collected in the Alboran Sea and the Strait of Sicily (Urania Bank). These data were combined with all available Mediterranean Lophelia and Madrepora ages compiled from literature to conduct a basin-wide assessment of the spatial and temporal occurrence of these prominent framework-forming scleractinian species in the Mediterranean realm and to unravel the palaeo-environmental conditions that controlled their proliferation or decline. For the first time special focus was placed on a closer examination of potential differences occurring between the eastern and western Mediterranean sub-basins. Our results clearly demonstrate that cold-water corals occurred sparsely in the entire Mediterranean during the last glacial before becoming abundant during the Bølling-Allerød warm interval, pointing to a basin-wide, almost concurrent onset in (re-)colonisation after ~13.5 ka. This time coincides with a peak in meltwater discharge originating from the northern Mediterranean borderlands which caused a major reorganisation of the Mediterranean thermohaline circulation. During the Younger Dryas and Holocene, some striking differences in coral proliferation were identified between the sub-basins such as periods of highly prolific coral growth in the eastern Mediterranean Sea during the Younger Dryas and in the western basin during the Early Holocene, whereas a temporary pronounced coral decline during the Younger Dryas was exclusively affecting coral sites in the Alboran Sea. Comparison with environmental and oceanographic data revealed that the proliferation of the Mediterranean corals is linked with enhanced productivity conditions. Moreover, corals thrived in intermediate depths and showed a close relationship with intermediate water mass circulation in the Mediterranean sub-basins. For instance, reduced Levantine Intermediate Water formation hampered coral growth in the eastern Mediterranean Sea during sapropel S1 event as reduced Winter Intermediate Water formation did in the westernmost part of the Mediterranean (Alboran Sea) during the Mid-Holocene. Overall, this study clearly demonstrates the importance to consider region-specific environmental changes as well as species-specific environmental preferences in interpreting coral chronologies. Moreover, it highlights that the occurrence or decline of cold-water corals is not controlled by one key parameter but rather by a complex interplay of various environmental variables.
Resumo:
Low-temperature diagenetic reactions (less than 50°C) are held responsible for the generation of small amounts of C1-C8 hydrocarbons (less than 100 ng hydrocarbon/g dry weight of sediment) at outer continental shelf Deep Sea Drilling Project Sites 468 and 469 (sub-bottom depths 415 m and 454 m, respectively). In contrast, Site 471 shows an exponential rise in hydrocarbon yields at depths greater than 500 meters. The high yields of C4-C8 hydrocarbons (up to 30 ng hydrocarbon/g dry weight of sediment) in this area of high geothermal and volcanic activity suggest the penetration of an active petroleum-generating zone. Similar arguments apply to Site 467, where relatively high levels (up to 3 µg hydrocarbon/g dry weight sediment) occurred in very shallow (250-600 m) sediments.
Resumo:
To unravel the climatic and environmental dynamics in the borderlands of the Aegean Sea during the early and middle Holocene, and notably for the interval of sapropel S1 (S1) formation, we have analysed terrestrial palynomorphs from a marine core in the northern Aegean Sea. The qualitative results were complemented by quantitative pollen-based climate reconstructions. A land-sea correlation was established based on pollen data and sediment lightness measurements from the same core, and previously published benthic foraminifer data from a nearby core. The borderlands of the Aegean Sea underwent a transition from an open vegetation to oak-dominated woodlands between ~10.4 and ~9.5 ka cal BP. A coeval increase in winter precipitation suggests that moisture availability was the main factor controlling Holocene reforestation. The ~50% higher winter precipitation during S1 formation relative to "pre-sapropelic" conditions suggests a strong contribution from the borderlands of the Aegean Sea to the freshwater surplus during S1 formation. The humid and mild winter conditions during S1 formation were repeatedly punctuated by short-term climatic events that caused a partial deforestation and a reorganisation within the broad-leaved arboreal vegetation. In the marine realm, these events are documented by improved benthic oxygenation. The strongest event represents the regional expression of the 8.2 ka cold event and led to an interruption in S1 formation. Except for the interval of S1 formation, the pollen-derived winter temperatures correlate with the smoothed GISP2 K+ series. They support the previously published, marine-based concept that the intensity of the Siberian High strongly controlled the winter climate in the Aegean region. During S1 formation in the Aegean Sea, however, climate conditions in the borderlands were more strongly affected by the monsoonally influenced climate system of the lower latitudes.
Resumo:
Sporomorphs and dinoflagellate cysts from site GIK16867 in the northern Angola Basin record the vegetation history of the West African forest during the last 700 ka in relation to changes in salinity and productivity of the eastern Gulf of Guinea. During most cool and cold periods, the Afromontane forest, rather than the open grass-rich dry forest, expanded to lower altitudes partly replacing the lowland rain forest of the borderlands east of the Gulf of Guinea. Except in Stage 3, when oceanic productivity was high during a period of decreased atmospheric circulation, high oceanic productivity is correlated to strong winds. The response of marine productivity in the course of a climatic cycle, however, is earlier than that of wind vigour and makes wind-stress-induced oceanic upwelling in the area less likely. Monsoon variation is well illustrated by the pollen record of increased lowland rain forest that is paired to the dinoflagellate cyst record of decreased salinity forced by increased precipitation and run-off.