830 resultados para Bacteriology of Antarctic paleosols
Resumo:
Intraspecific differences in the diets of many species of pinnipeds are to be expected in view of the great differences in morphology, life history and foraging behaviour between the sexes of many species. We examined the diet of the Antarctic fur seal population at Bouvetøya, Southern Ocean, to assess intersexual differences. This was made possible by the analysis of prey remains extracted from scats and regurgitations collected in areas used primarily by one or the other sex. The results indicate that both males and females feed primarily on Antarctic krill Euphausia superba with several species of fish and squid being taken, likely opportunistically given their prevalence. Significant differences were identified in the frequency of occurrence of otoliths in scats and the percentage numerical abundance of the major fish prey species in the diet. Adult males ate a smaller quantity of fish overall, but ate significantly more of the larger fish species. The greater diving capabilities of males and the fact that they are not limited in the extent of their foraging area by having to return regularly to feed dependant offspring may play a role in the differences found between the diets of males and females. Additionally, females might be more selective, favouring myctophids because they are richer in energy than krill. The absence of major differences in the diet between the sexes at this location is likely due to the high overall abundance of prey at Bouvetøya.
Resumo:
The family Munnopsidae was the most abundant and diverse among 22 isopod families collected by the ANDEEP deep-sea expeditions in 2002 and 2005 in the Atlantic sector of the Southern Ocean. A total of 219 species from 31 genera and eight subfamilies were analysed. Only 20% species were known to science, and 11% of these were reported outside the ANDEEP area mainly from other parts of the SO or the South Atlantic deep sea. One hundred and five species (50%) were rare, occurring at only 1 or 2 stations. Seventy-two percent of all munnopsid specimens belong to the most numerous 25 species with a total abundance of more than 75 specimens; 5 of these species (40% of all specimens) belong to the main genera of the world munnopsid fauna, Eurycope, Disconectes, Betamorpha, and Ilyarachna. About half of all munnopsid specimens and 34% of all species belong to the subfamily Eurycopinae, which is followed in occurrence by the Lipomerinae (19%). Munnopsinae is the poorest represented subfamily (1.5%). The composition of the subfamilies for the munnopsid fauna of the ANDEEP area differs from that of northern faunas. Lipomerinae show a lower percentage (7%) in the North Atlantic and are absent in the Arctic and in the North Pacific. This subfamily is considered as young and having a centre of origin and diversification in the Southern Ocean. The analyses of the taxonomic diversity and the distribution of Antarctic munnopsids and the distribution of the world fauna of all genera of the family revealed that species richness and diversity of the genera are highest in the ANDEEP area. The investigated fauna is characterised also by high percentage of endemic species, the highest richness and diversity of the main munnopsid genera and subfamily Lipomerinae. This supports the hypothesis that the Atlantic sector of SO deep sea may be considered as the main contemporary centre of diversification of the Munnopsidae. It might serve as a diversity pump of species of the Munnopsidae to more northern Atlantic areas via the deep water originating in the Weddell Sea.
Resumo:
By the nuclear bomb tests during the 1950s and early 1960s, the radiocarbon content of the atmospheric CO, on the Southern Hemisphere rose within a few years from 98 to 162% of the standard recent value and then dropped to 122% (at the end of 1984). This rapid fluctuation was used to determine the lifetime of five species of lichens collected in the beginning of 1985 in the maritime Antarctic. Under the assumption that Lichens assimilate each year carbon at the same rate and that carbon once fixed at least in main branches never will be exchanged later on. The age of mature thalli of Caioplaco regalis, Ramalino tetebrata and Ustiea antarctica was determined to 32 years, while U, aurantiaco-atra and Himantormia lugubris gave an age of ca. 38 years and ca. 60 years, respectively.
Resumo:
Ocean acidification substantially alters ocean carbon chemistry and hence pH but the effects on sea ice formation and the CO2 concentration in the enclosed brine channels are unknown. Microbial communities inhabiting sea ice ecosystems currently contribute 10-50% of the annual primary production of polar seas, supporting overwintering zooplankton species, especially Antarctic krill, and seeding spring phytoplankton blooms. Ocean acidification is occurring in all surface waters but the strongest effects will be experienced in polar ecosystems with significant effects on all trophic levels. Brine algae collected from McMurdo Sound (Antarctica) sea ice was incubated in situ under various carbonate chemistry conditions. The carbon chemistry was manipulated with acid, bicarbonate and bases to produce a pCO2 and pH range from 238 to 6066 µatm and 7.19 to 8.66, respectively. Elevated pCO2 positively affected the growth rate of the brine algal community, dominated by the unique ice dinoflagellate, Polarella glacialis. Growth rates were significantly reduced when pH dropped below 7.6. However, when the pH was held constant and the pCO2 increased, growth rates of the brine algae increased by more than 20% and showed no decline at pCO2 values more than five times current ambient levels. We suggest that projected increases in seawater pCO2, associated with OA, will not adversely impact brine algal communities.
Resumo:
Recordings from the PerenniAL Acoustic Observatory in the Antarctic ocean (PALAOA) show seasonal acoustic presence of 4 Antarctic ice-breeding seal species (Ross seal, Ommatophoca rossii, Weddell seal, Leptonychotes weddellii, crabeater, Lobodon carcinophaga, and leopard seal, Hydrurga leptonyx). Apart from Weddell seals, inhabiting the fast-ice in Atka Bay, the other three (pack-ice) species however have to date never (Ross and leopard seal) or only very rarely (crabeater seals) been sighted in the Atka Bay region. The aim of the PASATA project is twofold: the large passive acoustic hydrophone array (hereafter referred to as large array) aims to localize calling pack-ice pinniped species to obtain information on their location and hence the ice habitat they occupy. This large array consists of four autonomous passive acoustic recorders with a hydrophone sensor deployed through a drilled hole in the sea ice. The PASATA recordings are time-stamped and can therefore be coupled to the PALAOA recordings so that the hydrophone array spans the bay almost entirely from east to west. The second, smaller hydrophone array (hereafter referred to as small array), also consists of four autonomous passive acoustic recorders with hydrophone sensors deployed through drilled holes in the sea ice. The smaller array was deployed within a Weddell seal breeding colony, located further south in the bay, just off the ice shelf. Male Weddell seals are thought to defend underwater territories around or near tide cracks and breathing holes used by females. Vocal activity increases strongly during the breeding season and vocalizations are thought to be used underwater by males for the purpose of territorial defense and advertisement. With the smaller hydrophone array we aim to investigate underwater behaviour of vocalizing male and female Weddell seals to provide further information on underwater movement patterns in relation to the location of tide cracks and breathing holes. As a pilot project, one on-ice and three underwater camera systems have been deployed near breathing holes to obtain additional visual information on Weddell seal behavioural activity. Upon each visit in the breeding colony, a census of colony composition on the ice (number of animals, sex, presence of dependent pups, presence and severity of injuries-indicative of competition intensity) as well as GPS readings of breathing holes and positions of hauled out Weddell seals are taken.
Resumo:
Increasing atmospheric carbon dioxide concentration alters the chemistry of the oceans towards more acidic conditions. Polar oceans are particularly affected due to their low temperature, low carbonate content and mixing patterns, for instance upwellings. Calcifying organisms are expected to be highly impacted by the decrease in the oceans' pH and carbonate ions concentration. In particular, sea urchins, members of the phylum Echinodermata, are hypothesized to be at risk due to their high-magnesium calcite skeleton. However, tolerance to ocean acidification in metazoans is first linked to acid-base regulation capacities of the extracellular fluids. No information on this is available to date for Antarctic echinoderms and inference from temperate and tropical studies needs support. In this study, we investigated the acid-base status of 9 species of sea urchins (3 cidaroids, 2 regular euechinoids and 4 irregular echinoids). It appears that Antarctic regular euechinoids seem equipped with similar acid-base regulation systems as tropical and temperate regular euechinoids but could rely on more passive ion transfer systems, minimizing energy requirements. Cidaroids have an acid-base status similar to that of tropical cidaroids. Therefore Antarctic cidaroids will most probably not be affected by decreasing seawater pH, the pH drop linked to ocean acidification being negligible in comparison of the naturally low pH of the coelomic fluid. Irregular echinoids might not suffer from reduced seawater pH if acidosis of the coelomic fluid pH does not occur but more data on their acid-base regulation are needed. Combining these results with the resilience of Antarctic sea urchin larvae strongly suggests that these organisms might not be the expected victims of ocean acidification. However, data on the impact of other global stressors such as temperature and of the combination of the different stressors needs to be acquired to assess the sensitivity of these organisms to global change.
Resumo:
We present the first circum-East Antarctic chronology for the Holocene, based on 17 radiocarbon dates generated by the accelerator method. Marine sediments from around East Antarctica contain a consistent, high-resolution record of terrigenous (ice-proximal) and biogenic (open-marine) sedimentation during Holocene time. This record demonstrates that biogenic sedimentation beneath the open-marine environment on the continental shelf has been restricted to approximately the past 4 ka, whereas a period of terrigenous sedimentation related to grounding line advance of ice tongues and ice shelves took place between 7 and 4 ka. An earlier period of open-marine (biogenic sedimentation) conditions following the late Pleistocene glacial maximum is recognized from the Prydz Bay (Ocean Drilling Program) record between 10.7 and 7.3 ka. Clearly, the response of outlet systems along the periphery of the East Antarctic ice sheet during the mid-Holocene was expansion. This may have been a direct consequence of climate warming during an Antarctic 'Hypsithermal'. Temperature-accumulation relations for the Antarctic indicate that warming will cause a significant increase in accumulation rather than in ablation. Models that predict a positive mass balance (growth) of the Antarctic ice sheet under global warming are supported by the mid-Holocene data presented herein.
Resumo:
Despite the fact that ocean acidification is considered to be especially pronounced in the Southern Ocean, little is known about CO2-dependent physiological processes and the interactions of Antarctic phytoplankton key species. We therefore studied the effects of CO2 partial pressure (PCO2) (16.2, 39.5, and 101.3 Pa) on growth and photosynthetic carbon acquisition in the bloom-forming species Chaetoceros debilis, Pseudo-nitzschia subcurvata, Fragilariopsis kerguelensis, and Phaeocystis antarctica. Using membrane-inlet mass spectrometry, photosynthetic O2 evolution and inorganic carbon (Ci) fluxes were determined as a function of CO2 concentration. Only the growth of C. debilis was enhanced under high PCO2. Analysis of the carbon concentrating mechanism (CCM) revealed the operation of very efficient CCMs (i.e., high Ci affinities) in all species, but there were species-specific differences in CO2-dependent regulation of individual CCM components (i.e., CO2 and uptake kinetics, carbonic anhydrase activities). Gross CO2 uptake rates appear to increase with the cell surface area to volume ratios. Species competition experiments with C. debilis and P. subcurvata under different PCO2 levels confirmed the CO2-stimulated growth of C. debilis observed in monospecific incubations, also in the presence of P. subcurvata. Independent of PCO2, high initial cell abundances of P. subcurvata led to reduced growth rates of C. debilis. For a better understanding of future changes in phytoplankton communities, CO2-sensitive physiological processes need to be identified, but also species interactions must be taken into account because their interplay determines the success of a species.
Resumo:
Antarctic krill (Euphausia superba), a key species of Southern Ocean food webs plays a central role in ecosystem processes, community dynamics of apex predators and as a commercial fishery target. A decline in krill abundance during the late 20th century in the SW Atlantic sector has been linked to a concomitant decrease in sea ice, based on the hypothesis that sea ice acts as a feeding ground for overwintering larvae. However, evidence supporting this hypothesis has been scarce due to logistical challenges of collecting data in austral winter. Here we report on a winter study that involved diver observations of larval krill in their under-ice environment, ship-based studies of krill, sea ice physical characteristics, and biophysical model analyses of krill-ocean-ice interactions. We present evidence that complex under-ice topography is vital for larval krill in terms of dispersal and advection into high productive nursery habitats, rather than the provision by the ice environment of food. Further, ongoing changes in sea ice will lead to increases in sea-ice regimes favourable for overwintering larval krill but shifting southwards. This will result in ice-free conditions in the SW Atlantic, which will be conducive for enhancing food supplies due to sufficient light and iron availability, thus enhancing larvae development and growth. However, the associated impact on dispersal and advection may lead to a net shift in krill from the SW Atlantic to regions further east by the eastward flowing ACC and the northern branch of the Weddell Gyre, with profound consequences for the Southern Ocean pelagic ecosystem.