58 resultados para Aylmer East, Quebec
Resumo:
Benthic foraminifer and delta13C data from Site 849, on the west flank of the East Pacific Rise (0°11 'N, 110°31'W; 3851 m), give relatively continuous records of deep Pacific Ocean stable isotope variations between 0 and 5 Ma. The mean sample spacing is 4 k.y. Most analyses are from Cibicides wuellerstorfi, but isotopic offsets relative to Uvigerina peregrina appear roughly constant. Because of its location west of the East Pacific Rise, Site 849 yields a suitable record of mean Pacific Ocean delta13C, which approximates a global oceanic signal. The ~100-k.y.-period climate cycle, which is prevalent in delta18O does not dominate the long-term delta13C record. For delta13C, variations in the ~400- and 41-k.y. periods are more important. Phase lags of delta13C relative to ice volume in the 41- and 23-k.y. bands are consistent with delta13C as a measure of organic biomass. A model-calculated exponential response time of 1-2 k.y. is appropriate for carbon stored in soils and shallow sediments responding to glacial-interglacial climate change. Oceanic delta13C leads ice volume slightly in the 100-k.y. band, and this suggests another process such as changes in continental weathering to modulate mean river delta13C at long periods. The delta13C record from Site 849 diverges from that of Site 677 in the Panama Basin mostly because of decay of 13C-depleted organic carbon in the relatively isolated Panama Basin. North Atlantic to Pacific delta13C differences calculated using published data from Sites 607 and 849 reveal variations in Pliocene deep water within the range of those of the late Quaternary. Maximum delta13C contrast between these sites, which presumably reflects maximum influx of high-delta13C northern source water into the deep North Atlantic Ocean, occurred between 1.3 and 2.1 Ma, well after the initiation of Northern Hemisphere glaciation. Export of high-delta13C North Atlantic Deep Water from the Atlantic to the circumpolar Antarctic, as recorded by published delta13C data from Subantarctic Site 704, appears unrelated to the North Atlantic-Pacific delta13C contrast. To account for this observation, we suggest that deep-water formation in the North Atlantic reflects northern source characteristics, whereas export of this water into the circumpolar Antarctic reflects Southern Hemisphere wind forcing. Neither process appears directly linked to ice-volume variations.
Resumo:
This paper presents data on geographic and geologic conditions of modern sedimentation in the Lake Untersee, the largest lake in the East Antarctica. Geochemical and sedimentation data indicate that the leading mechanism supplying aluminosilicate sedimentary material to the surface layer of bottom sediments is seasonal melting of the Anuchin glacier and the mountain glacier on the southeastern part of the valley hosting the lake. Strongly reduced conditions in the lowermost 25 m of the water column in the smaller of two depressions of the lake bottom were favorable for enrichment of the bottom sediments in bacteriogenic organic matter, Mo, Au, and Pd. H2S-contaminated water results to significant enrichment of the sediments only in redox-sensitive elements that are able to migrate in anionic complexes and precipitate (co-precipitate) as sulfides.
Resumo:
The reduction in sea ice along the SE Greenland coast during the last century has severely impacted ice-rafting to this area. In order to reconstruct ice-rafting and oceanographic conditions in the area of Denmark Strait during the last ~150 years, we conducted a multiproxy study on three short (20 cm) sediment cores from outer Kangerdlugssuaq Trough (~300 m water depth). The proxy-based data obtained have been compared with historical and instrumental data to gain a better understanding of the ice sheet-ocean interactions in the area. A robust chronology has been developed based on 210Pb and 137Cs measurements on core PO175GKC#9 (~66.2°N, 32°W) and expanded to the two adjacent cores based on correlations between calcite weight percent records. Our proxy records include sea-ice and phytoplankton biomarkers, and a variety of mineralogical determinations based on the <2 mm sediment fraction, including identification with quantitative x-ray diffraction, ice-rafted debris counts on the 63-150 µm sand fraction, and source identifications based on the composition of Fe oxides in the 45-250 µm fraction. A multivariate statistical analysis indicated significant correlations between our proxy records and historical data, especially with the mean annual temperature data from Stykkishólmur (Iceland) and the storis index (historical observations of sea-ice export via the East Greenland Current). In particular, the biological proxies (calcite weight percent, IP25, and total organic carbon %) showed significant linkage with the storis index. Our records show two distinct intervals in the recent history of the SE Greenland coast. The first of these (ad 1850-1910) shows predominantly perennial sea-ice conditions in the area, while the second (ad 1910-1990) shows more seasonally open water conditions.
Resumo:
Vertical distribution of organic phosphorus and phosphatase activity was studied in the Southeast Pacific Ocean. The average rate of mineralization of organic phosphorus in the 0-200 m layer was shown to differ by a factor of 5-10 in oligotrophic and eutrophic areas, while residence time of phosphorus in production-destruction cycles differed by a factor of only 2-5, apparently because of both concentration of organic phosphorus and phosphorolysis rate increased simultaneously in the areas.
Dissolved organic carbon (DOC) in Arctic ground ice, from northwest Canada, east Siberia, and Alaska
Resumo:
Thermal permafrost degradation and coastal erosion in the Arctic remobilize substantial amounts of organic carbon (OC) and nutrients which have accumulated in late Pleistocene and Holocene unconsolidated deposits. Permafrost vulnerability to thaw subsidence, collapsing coastlines and irreversible landscape change are largely due to the presence of large amounts of massive ground ice such as ice wedges. However, ground ice has not, until now, been considered to be a source of dissolved organic carbon (DOC), dissolved inorganic carbon (DIC) and other elements which are important for ecosystems and carbon cycling. Here we show, using biogeochemical data from a large number of different ice bodies throughout the Arctic, that ice wedges have the greatest potential for DOC storage, with a maximum of 28.6 mg/L (mean: 9.6 mg/L). Variation in DOC concentration is positively correlated with and explained by the concentrations and relative amounts of typically terrestrial cations such as Mg2+ and K+. DOC sequestration into ground ice was more effective during the late Pleistocene than during the Holocene, which can be explained by rapid sediment and OC accumulation, the prevalence of more easily degradable vegetation and immediate incorporation into permafrost. We assume that pristine snowmelt is able to leach considerable amounts of well-preserved and highly bioavailable DOC as well as other elements from surface sediments, which are rapidly frozen and stored in ground ice, especially in ice wedges, even before further degradation. We found that ice wedges in the Yedoma region represent a significant DOC (45.2 Tg) and DIC (33.6 Tg) pool in permafrost areas and a freshwater reservoir of 4200 km**3. This study underlines the need to discriminate between particulate OC and DOC to assess the availability and vulnerability of the permafrost carbon pool for ecosystems and climate feedback upon mobilization.