148 resultados para Art 3 Ley 223 de 1995
Resumo:
We improved upper Eocene to Oligocene deep-sea chronostratigraphic control by integrating isotope (87Sr/86Sr, delta18O, delta13C) stratigraphy and magnetostratigraphy. Most previous attempts to establish the timing of isotope fluctuations have relied upon biostratigraphic age estimates which have uncertainties of 0.5 to over 4.0 m.y. Deep Sea Drilling Project (DSDP) Site 522 contains the best available upper Eocene to Oligocene magnetostratigraphic record which allows first-order correlations of isotope records (87Sr/86Sr, delta18O, delta13C) to the Geomagnetic Polarity Time Scale (GPTS). Empirical calibrations between the 87Sr/86Sr of foraminifera and magnetochronology at Site 522 allow more precise correlation of ,unknown' samples with the GPTS. For example, shallow water and high-latitude sections may be tied into the deep-sea record. Sr-isotope stratigraphic resolution for the latest Eocene to Oligocene is approximately 2 m.y.
Resumo:
Using bathymetric transects of surface sediments underlying similar sea surface temperatures but exposed to increasing dissolution, we examined the processes which affect the relationship between foraminiferal Mg/Ca and d18O. We found that Globigerinoides saccculifer calcifies over a relatively large range of water depth and that this is apparent in their Mg content. On the seafloor, foraminiferal Mg/Ca is substantially altered by dissolution with the degree of alteration increasing with water depth. Selective dissolution of the chamber calcite, formed in surface waters, shifts the shell's bulk Mg/Ca and d18O toward the chemistries of the secondary crust acquired in colder thermocline waters. The magnitude of this shift depends on both the range of temperatures over which the shell calcified and the degree to which it is subsequently dissolved. In spite of this shift the initial relationship between Mg/Ca and d18O, determined by their temperature dependence, is maintained. We conclude that paired measurements of d18O and Mg/Ca can be used for reconstructing d18Owater, though care must be taken to determine where in the water column the reconstruction applies.