21 resultados para Altimetry data


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Late-summer thickness distributions of large ice floes in the Transpolar Drift between Svalbard and the North Pole in 1991, 1996, 1998, and 2001 are compared. They have been derived from drilling and electromagnetic (EM) sounding. Results show a strong interannual variability, with significantly reduced thickness in 1998 and 2001. The mean thickness decreased by 22.5% from 3.11 m in 1991 to 2.41 m in 2001, and the modal thickness by 22% from 2.50 m in 1991 to 1.95 m in 2001. Since modal thickness represents the thickness of level ice, the observed thinning reflects changes in thermodynamic conditions. Together with additional data from the Laptev Sea obtained in 1993, 1995, and 1996, results are in surprising agreement with recently published thickness anomalies retrieved from satellite radar altimetry for Arctic regions south of 81.5°N. This points to a strong sensitivity of radar altimetry data to level ice thickness.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The present study addresses the hypothesis that the Western Alborán Gyre in the Alborán Sea (the westernmost Mediterranean basin adjacent to the Strait of Gibraltar) influences the composition of the outflow through the Strait of Gibraltar. The process invoked is that strong and well-developed gyres help to evacuate the Western Mediterranean Deep Water from the Alboran basin, thus increasing its presence in the outflow, whereas weak gyres facilitates the outflow of Levantine and other Intermediate waters. To this aim, in situ observations collected at Camarinal (the main) and Espartel (the westernmost) sills of the Strait have been analyzed along with altimetry data, which were employed to obtain a representative proxy of the strength of the gyre. An encouraging correlation of the expected sign was observed between the time series of potential temperature at Espartel sill, which is show to keep information on the outflow composition, and the proxy of the Western Alborán Gyre, which strongly suggests the correctness of the hypothesis, although the weakness of the involved signals does not allow for drawing definitive conclusions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

EOT11a is a global (E)mpirical (O)cean (T)ide model derived in 2011 by residual analysis of multi-mission satellite (a)ltimeter data. EOT11a includes amplitudes and phases of the main astronomical tides M2, S2, N2, K2, 2N2, O1, K1, P2, and Q1, the non-linear constituent M4, the long period tides Mm and Mf, and the radiational tide S1. Ocean tides as well as loading tides are provided. EOT11a was computed by means of residual tidal analysis of multi-mission altimeter data from TOPEX/Poseidon, ERS-2, ENVISAT, and Jason-1/2, as far as acquired between September 1992 and April 2010. The resolution of 7.5'x7.5' is identical with FES2004 which was used as reference model for the residual tide analysis. The development of EOT11a was funded by the Deutsche Forschungsgemeinschaft (DFG) under grant BO1228/6-2.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Lofoten Basin is the most eddy rich region in the Norwegian Sea. In this paper, the characteristics of these eddies are investigated from a comprehensive database of nearly two decades of satellite altimeter data (1995-2013) together with Argo profiling floats and surface drifter data. An automated method identified 1695/1666 individual anticyclonic/cyclonic eddies in the Lofoten Basin from more than 10,000 altimeter-based eddy observations. The eddies are found to be predominantly generated and residing locally. The spatial distributions of lifetime, occurrence, generation sites, size, intensity, and drift of the eddies are studied in detail. The anticyclonic eddies in the Lofoten Basin are the most long-lived eddies (>60 days), especially in the western part of the basin. We reveal two hotspots of eddy occurrence on either side of the Lofoten Basin. Furthermore, we infer a cyclonic drift of eddies in the western Lofoten Basin. Barotropic energy conversion rates reveals energy transfer from the slope current to the eddies during winter. An automated colocation of surface drifters trapped inside the altimeter-based eddies are used to corroborate the orbital speed of the anticyclonic and cyclonic eddies. Moreover, the vertical structure of the altimeter-based eddies is examined using colocated Argo profiling float profiles. Combination of altimetry, Argo floats, and surface drifter data is therefore considered to be a promising observation-based approach for further studies of the role of eddies in transport of heat and biomass from the slope current to the Lofoten Basin.