19 resultados para Age-related-changes
Resumo:
The high-productive upwelling area off Morocco is part of one of the four major trade-wind driven continental margin upwelling zones in the world oceans. While coastal upwelling occurs mostly on the shelf, biogenic particles derived from upwelling are deposited mostly at the upper continental slope. Nutrient-rich coastal water is transported within the Cape Ghir filament region at 30°N up to several hundreds of kilometers offshore. Both upwelling intensity and filament activity are dependent on the strength of the summer Trades. This study is aimed to reconstruct changes in trade wind intensity over the last 250,000 years by the analysis of the productivity signal contained in the sedimentary biogenic particles of the continental slope and beneath the Cape Ghir filament. Detailed geochemical and geophysical analyses (TOC, carbonate, C/N, delta13Corg, delta15N, delta13C of benthic foraminifera, delta18O of benthic and planktic foraminifera, magnetic susceptibility) have been carried out at two sites on the upper continental slope and one site located further offshore influenced by the Cape Ghir filament. A second offshore site south of the filament was analyzed (TOC, magnetic susceptibility) to distinguish the productivity signal related to the filament signal from the general offshore variability. Higher productivity during glacial times was observed at all four sites. However, the variability of productivity during glacial times was remarkably different at the filament-influenced site compared to the upwelling-influenced continental slope sites. In addition to climate-related changes in upwelling intensity, zonal shifts of the upwelling area due to sea-level changes have impacted the sedimentary productivity record, especially at the continental slope sites. By comparison with other proxies related to the strength and direction of the prevailing winds (Si/Al ratio as grain-size indicator, pollen) the productivity record at the filament-influenced site reflects mainly changes in trade-wind intensity. Our reconstruction reveals that especially during glacial times trade-wind intensity was increased and showed a strong variability with frequencies related to precession.
Resumo:
At four sites in the central equatorial Pacific Ocean the flux of extraterrestrial 3He, determined using the excess 230Th profiling method, is 8 * 10**-13 cm**3 STP/cm**2/ka. This supply rate is constant to within 30%. At these same sites, however, the burial rate of 3He, determined using chronostratigraphic accumulation rates, varies by more than a factor of 3. The lowest burial rates, which occur north of the equator at 1°N, 139°W are lower than the global average rate of supply of extraterrestrial 3He by 20% and indicate that sediment winnowing may have occurred. The highest burial rates, which are recorded at the equator and at 2°S, are higher than the rate of supply of extraterrestrial 3He by 100%, and these provide evidence for sediment focusing. By analyzing several proxies measured in core PC72 sediments spanning the past 450 kyr we demonstrate that periods of maximum burial rates of 230Th, 3He, 10Be, Ti, and barite, with a maximum peak-to-trough amplitude of a factor of 6, take place systematically during glacial time. However, the ratio of any one proxy to another is constant to within 30% over the entire length of the records. Given that each proxy represents a different source (234U decay in seawater, interplanetary dust, upper atmosphere, continental dust, or upper ocean), our preferred interpretation for the covariation is that the climate-related changes in burial rates are driven by changes in sediment focusing.
Resumo:
Four strains of the coccolithophore Emiliania huxleyi (RCC1212, RCC1216, RCC1238, RCC1256) were grown in dilute batch culture at four CO2 levels ranging from ~200 µatm to ~1200 µatm. Coccolith morphology was analyzed based on scanning electron micrographs. Three of the four strains did not exhibit a change in morphology over the CO2 range tested. One strain (RCC1256) displayed an increase in the percentage of malformed coccoliths with increasing CO2 concentration. We conclude that the sensitivity of the coccolith-shaping machinery to carbonate chemistry changes is strain-specific. Although it has been shown before that carbonate chemistry related changes in growth- and calcification rate are strain-specific, there seems to be no consistent correlation between coccolith morphology and growth or calcification rate. We did not observe an increase in the percentage of incomplete coccoliths in RCC1256, indicating that the coccolith-shaping machinery per se is affected by acidification and not the signalling pathway that produces the stop-signal for coccolith growth.
Resumo:
Focussing on heavy-mineral associations in the Laptev-Sea continental margin area and the eastern Arctic Ocean, 129 surface sediment samples, two short and four long gravity cores have been studied. By means of the accessory components, heavy-mineral associations of surface sediment samples from the Laptev-See continental slope allowed the distinction into two different mineralogical provinces, each influenced by fluvial input of the Siberian river Systems. Transport pathways via sea ice from the shallow shelf areas into the Arctic Ocean up to the final ablation areas of the Fram Strait can be reconstructed by heavy-mineral data of surface sediments from the central Arctic Ocean. The shallow shelf of the Laptev Sea seems to be the most important source area for terrigenous material, as indicated by the abundant occurence of amphiboles and clinopyroxenes. Underneath the mixing Zone of the two dominating surface circulation Systems, the Beaufort- Gyre and Transpolar-Drift system, the imprint of the Amerasian shelf regions up to the Fram Strait is detectable because of a characteristical heavy-mineral association dominated by detrital carbonate and opaque minerals. Based On heavy-mineral characteristics of the potential circum-Arctic source areas, sea-ice drift, origin and distribution of ice-rafted material can be reconstructed during the past climatic cycles. Different factors controlling the transport of terrigenous material into the Arctic Ocean. The entrainment of particulate matter is triggered by the sea level, which flooded during highs and lows different regions resulting in the incorporation of sediment from different source areas into the sea ice. Additionally, the fluvial input even at low stands of sea level is responsible for the delivery of material of distinct sources for entrainment into the sea ice. Glacials and interglacials of climate cycles of the last 780 000 years left a characteristical signal in the central Arctic Ocean sediments caused by the ice- rafted material from different sources in the circum-Arctic regions and its change through time. Changes in the heavy-mineral association from an amphibole-dominated into a garnet-epidote-assemblage can be related to climate-related changes in source areas and directions of geostrophic winds, the dominating drive of the sea-ice drift. During Marine Isotope Stage (MIS) 6, the central Arctic Ocean is marked by an heavy-mineral signal, which occurs in recent sediments of the eastern Kara Sea. Its characteristics are high amounts of epidote, garnet and apatite. On the other hand, during the Same time interval a continuous record of Laptev Sea sediments is documented with high contents of amphiboles on the Lomonosov Ridge near the Laptev Sea continental slope. A nearly similar Pattern was detected in MIS 5 and 4. Small-scale glaciations in the Putorana-mountains and the Anabar-shield may have caused changes in the drainage area of the rivers and therefore a change in fluvial input. During MIS 3, the heavy-mineral association of central Arctic sediments show similar patterns than the Holocene mineral assemblage which consists of amphiboles, ortho- and clinopyroxenes with a Laptev Sea source. These minerals are indicating a stable Transpolar-Drift system similar to recent conditions. An extended influence of the Beaufort Gyre is only recognized, when sediment material from the Amerasian shelf areas reached the core location PS2757-718 during Termination Ib. Based On heavy-mineral data from Laptev-Sea continental slope Core PS2458-4 the paleo-sea-ice drift in the Laptev Sea during 14.000 years was reconstructed. During Holocene sea-level rise, the bathymetrically deeper parts of the Western shelf were flooded first. At the beginning of the Atlantic stage, nearly the entire shelf was marine influenced by fully marine conditions and the recent surface circulation was established.