182 resultados para Africa, British East
Resumo:
This paper analyzes the hydrological processes and the impact of soil properties and land use on these processes in tropical headwater catchment in the sub-humid part of Benin (West-Africa), the Aguima catchment. The presented study is integrated in the GLOWA IMPETUS project, which investigates the effects of global change on the water cycle and water availability on a regional scale in Morocco and Benin. The lack of field investigations concerning soil and surface hydrology in the Benin research area necessitates detailed field measurements including measurements of discharge, soil water dynamics, soil physical properties etc. on the local scale in order to understand the dominant runoff generation processes and its influencing factors. This is a pre-requisite to be able to forecast the effects which global change has on hydrological processes and water availability in the region. The paper gives an overview over the hydrologic measuring concept of the IMPETUS-Benin project focusing on measurements concerning the soil saturated conductivity ksat and discharge behaviour of two different sub-catchment of the Aguima catchment. The results of ksat measurements revealed that interflow is the dominant runoff process on the hillslopes of the investigated catchment. Concerning the impact of land use on the hydrological processes infiltration experiments showed that infiltration rates were reduced on cultivated land compared to natural land cover. This results in significant differences in runoff behaviour and runoff ratios while comparing natural and agricultural used catchments.
Resumo:
In order to reconstruct Late Quatemary variations of surface oceanography in the eastequatorial South Atlantic, time series of sea-surface temperatures (SST) and paleoproductivity were established from cores recovered in the Guinea and Angola Basins, and at the Walvis Ridge. These records, based on sedimentary alkenone and organic carbon concentrations, reveal that during the last 350,000 years surface circulation and productivity changes in the east-equatorial South Atlantic were highiy sensitive to climate forcing at 23- and 100-kyr periodicities. Covarying SST and paleoproductivity changes at the equator and at the Walvis Ridge appear to be driven by variations in zonal trade-wind intensity, which forces intensification or reduction of coastal and equatorial upwelling, as well as enhanced Benguela cold water advection from the South. Phase relationships of precessional variations in the paleoproductivity and SST records from the distinct sites were evaluated with respect to boreal summer insolation over Africa, movements of southem ocean thermal fronts, and changes in global ice volume. The 23-kyr phasing implies a sensitivity of eastem South Atlantic surface water advection and upwelling to West African monsoon intensity and to changes in the position ofthe subtropical high pressure cell over the South Atlantic, both phenomena which modulate zonal strength of southeasterly trades. SST and productivity changes north of 20°S lack significant variance at the 41-kyr periodicity; and at the Walvis Ridge and the equator lead changes in ice volume. This may indicate that obliquity-driven clirnate change, characteristic for northem high latitudes, e.g fluctuations in continental ice masses, did not substantially influence subtropical and tropical surface circulation in the South Atlantic. At the 23-kyr cycle SST and productivity changes in the eastern Angola Basin lag those in the equatorial Atlantic and at the Walvis Ridge by about 3500 years. This lag is explained by variations in cross-equatorial surface water transport and west-east countercurrent retum flow modifying precessional variations of SST and productivity in the eastem Angola Basin relative to those in the mid South Atlantic area under the central field of zonal trade winds. Sea level-related shifts of upwelling cells in phase with global clirnate change may be also recorded in SST and productivity variability along the continental margin off Southwest Africa. They may account for the delay of the paleoceanogreaphic signal from continental margin sites with respect to that from the pelagic sites at the equator and the Walvis Ridge.
Resumo:
This work was based on a study of the upper layer of recent carbonate bottom sediments of the Atlantic Ocean. Biogenic carbonate of recent sediments is represented by metastable and stable minerals. In the ocean metastable phases can exist indefinitely long, but the structure of polymorphism determines inevitability of transformation of metastable phases into stable ones. This transformation occurs in the solid phase. In the absence of a critical point between the two phases of the transition process is not available for study by microscopic methods. It is estimated indirectly by studying the nature and extent of changes in mineral and chemical compositions. With aging of sediments their mineral composition alters in direction of increasing contents of resistant minerals. Fine grained sediments and fractions are subject to more intensive effects of early diagenesis processes, rather than coarse ones; this is reflected in their mineral composition. Regularities of distribution of carbonate minerals in size fractions consistent with the direction of polymorphic transformations in calcium carbonate. Such transformations can occur in a particular dimension of grains. Concrete grain size depends on environmental conditions. This situation explains presence of metastable biogenic carbonates at different depths of the ocean and suggests presence of diagenetic calcite in sediments occurring below expected for each case depth of the transition.
Resumo:
Study of chemical composition of 26 samples collected at depths from 400 to 1400 m on vertex surfaces of the Southeast Indian Ridge, Mascarene Ridge, Madagascar Ridge, and Mozambique Ridge, as well as on the upper part of the Southeast Africa continental slope showed that the samples represent three groups of rocks: 1) low phosphate or phosphate-free ferromanganese rocks, 2) phosphate ferromanganese rocks 3) phosphorites and phosphatized limestones.
Resumo:
Vertical profiles of light scattering at a right angle and turbidity profiles in seawater indicating suspended matter concentration in the near-bottom nepheloid layer (NNL) were measured simultaneously with temperature, salinity, and density profiles at the continental slope off the northwestern Africa. About 100 stations 5' apart in latitude and longitude were carried out over an ocean area of 6100 sq. km. Special features of the NNL variability in the area were analyzed. It was found that some structural parameters of the NNL (maximum transparency depth, that is the upper boundary of NNL; NNL thickness; maximum and total turbidity) correlate with ocean depth. On the average, thickness of the NNL in the area is 20-40% of the ocean depth. At most stations the NNL is fairly strong. In the shelf region NNL turbidity was influenced by the intensive near-shore upwelling. Formation of ''high-energy near-bottom layers'' in the shelf region resulted from passing of a mesoscale cyclonic eddy that caused redistribution of measured quantities within the entire water column.
Resumo:
Benthic foraminiferal d18O and Mg/Ca of sediment cores off tropical NW Africa are used to study the properties of Atlantic central waters during the Last Glacial Maximum (LGM) and Heinrich Stadial 1 (HS1). We combined our core top data with published results to develop a new Mg/Ca-temperature calibration for Planulina ariminensis, which shows a Mg/Ca-temperature sensitivity of 0.19 mmol/mol per °C. Estimates of the LGM and HS1 thermocline temperatures are comparable to the present-day values between 200 and 400 m water depth, but were 1.2-1.5°C warmer at 550-570 m depth. The HS1 thermocline waters (200-570 m depth) did not show any warming relative to the LGM. This is in contrast to previous climate model studies, which concluded that tropical Atlantic thermocline waters warmed significantly when Atlantic meridional overturning circulation was reduced. However, our results suggest that thermocline temperatures of the northeastern tropical Atlantic show no pronounced sensitivity to changes in the thermohaline circulation during glacial periods. In contrast, we find a significant increase in thermocline-water salinity during the LGM (200-550 m depth) and HS1 (200-400 m depth) with respect to the present-day, which we relate to changes in the wind-driven circulation. We infer that the LGM thermocline (200-550 m depth) and the HS1 upper thermocline (200-400 m depth) in the northeastern tropical Atlantic was ventilated by surface waters from the North Atlantic rather than the southern-sourced waters. This suggests that the frontal zone between the modern South Atlantic and North Atlantic Central Waters was probably shifted southward during the LGM and HS1.
Resumo:
Organic and mineral phosphorus (P_org and P_min) have been determined in pore waters of terrigenous, biogenous, as well as weakly phosphatic and phosphatic sediments from the shelf of the West Africa (in 30 samples). Concentrations of P_min in the pore waters have been examined in close relation to grain size and chemical composition (amounts of P and N_org) of solid phase of the sediments. It has been demonstrated that among sands and coarse silts, maximum concentrations of P_min (up to 1.7 mg/l) in the pore waters have been observed in weakly phosphatic and phosphatic sediments rich in organic matter of the highly productive shelf of the Southwest Africa. Concentrations of P_min in the pore waters are most clearly associated with contents of N_org in the solid phase of the sediments (correlation coefficient R = 0.71) and P_org in the pore waters (R = 0.78).