103 resultados para Acyclic glycerol dialkyl glycerol tetraether flux
Resumo:
Glycerol dibiphytanyl glycerol tetraether (GDGT) lipids are part of the cellular membranes of Thaumarchaeota, an archaeal phylum composed of aerobic ammonia oxidizers, and are used in the paleotemperature proxy TEX86. GDGTs in live cells possess polar head groups and are called intact polar lipids (IPL-GDGTs). Their transformation to core lipids (CL) by cleavage of the head group was assumed to proceed rapidly after cell death but it has been suggested that some of these IPL-GDGTs can, just like the CL-GDGTs, be preserved over geological timescales. Here, we examined IPL-GDGTs in deeply buried (0.2-186 mbsf, ~2.5 Myr) sediments from the Peru Margin. Direct measurements of the most abundant IPL-GDGT, IPL-crenarchaeol, specific for Thaumarchaeota, revealed depth profiles which differed per head group. Shallow sediments (<1 mbsf) contained IPL-crenarchaeol with both glycosidic- and phosphate headgroups, as also observed in thaumarchaeal enrichment cultures, marine suspended particulate matter and marine surface sediments. However, hexose, phosphohexose-crenarchaeol is not detected anymore below 6 mbsf (~7 kyr), suggesting a high lability. In contrast, IPL-crenarchaeol with glycosidic head groups is preserved over time scales of Myr. This agrees with previous analyses of deeply buried (>1 m) marine sediments, which only reported glycosidic and no phosphate-containing IPL-GDGTs. TEX86 values of CL-GDGTs did not markedly change with depth, and the TEX86 of IPL-derived GDGTs decreased only when the proportions of monohexose- to dihexose-GDGTs changed, likely due to the enhanced preservation of the monohexose GDGTs. Our results support the hypothesis that in situ GDGT production and differential IPL degradation in sediments is not substantially affecting TEX86 paleotemperature estimations based on CL GDGTs and indicate that likely only a small amount of IPL-GDGTs present in deeply buried sediments is part of cell membranes of active Archaea. The amount of archaeal biomass in the deep biosphere based on these IPLs may have been substantially overestimated.
Resumo:
In the reconstruction of sea surface temperature (SST) from sedimentary archives, secondary sources, lateral transport and selective preservation are considered to be mainly negligible in terms of influencing the primary signal. This is also true for the archaeal glycerol dialkyl glycerol tetraethers (GDGTs) that form the basis for the TEX86 SST proxy. Our samples represent four years variability on a transect off Cape Blanc (NW Africa). We studied the subsurface production, vertical and lateral transport of intact polar lipids and core GDGTs in the water column at high vertical resolution on the basis of suspended particulate matter (SPM) samples from the photic zone, the subsurface oxygen minimum zone (OMZ), nepheloid layers (NL) and the water column between these. Furthermore we compared the water column SPM GDGT composition with that in underlying surface sediments. This is the first study that reports TEX86 values from the precursor intact polar lipids (IPLs) associated with specific head groups (IPL -specific TEX86). We show a clear deviation from the sea surface GDGT composition in the OMZ between 300 and 600 m. Since neither lateral transport nor selective degradation provides a satisfactory explanation for the observed TEX-derived temperature profiles with a bias towards higher temperatures for both core- and IPL -specific TEX86 values, we suggest that subsurface in situ production of archaea with a distinct relationship between lipid biosynthesis and temperature is the responsible mechanism. However, in the NW-African upwelling system the GDGT contribution of the OMZ to the surface sediments does not seem to affect the sedimentary TEX86 as it shows no bias and still reflects the signal of the surface waters between 0 and 60 m.
Resumo:
Marine sediments harbor an enormous quantity of microorganisms, including a multitude of novel species. The habitable zone of the marine sediment column begins at the sediment-water interface and probably extends to depths of several thousands of meters. Studies of the microbial diversity in this ecosystem have mostly relied on molecular biological techniques. We used a complementary method - analysis of intact polar membrane lipids - to characterize the in-situ microbial community in sediments covering a wide range of environmental conditions from Peru Margin, Equatorial Pacific, Hydrate Ridge, and Juan de Fuca Ridge. Bacterial and eukaryotic phospholipids were only detected in surface sediments from the Peru Margin. In contrast, deeply buried sediments, independent of their geographic location, were dominated by archaeal diether and tetraether lipids with various polar head groups and core lipids. We compared ring distributions of archaeal tetraether lipids derived from polar glycosidic precursors with those that are present as core lipids. The distributions of these related compound pools were distinct, suggestive of different archaeal sources, i.e., the polar compounds derive from sedimentary communities and the core lipids are fossil remnants from planktonic communities with possible admixtures of decayed sedimentary archaea. This in-situ production of distinct archaeal lipid populations potentially affects applications of the TEX86 paleotemperature proxy as demonstrated by offsets in reconstructed temperatures between both pools. We evaluated how varying cell and lipid stabilities will influence the sedimentary pool by using a box-model. The results are consistent with (i) a requirement of continuous inputs of freshly synthesized lipids in subsurface sediments for explaining the observed distribution of intact polar lipids, and (ii) decreasing lipid inputs with increasing burial depth.
Resumo:
Reconstructing ocean temperature values is a major target in paleoceanography and climate research. However, most temperature proxies are organism-based and thus suffer from an "ecological bias". Multiproxy approaches can potentially overcome this bias but typically require more investment in time and resources, while being susceptible to errors induced by sample preparation steps necessary before analysis. Three lipid-based temperature proxies are widely used: UK'37 (based on long chain alkenones from phytoplanktonic haptophytes), TEX86 [based on glycerol dialkyl glycerol tetraethers (GDGTs) from pelagic archaea] and LDI (based on long chain diols from phytoplanktonic eustigmatophytes). So far, separate analytical methods, including gas chromatography (GC) and liquid chromatography (LC), have been used to determine these proxies. Here we present a sensitive method for determining all three in a single normal phase high performance LC-atmospheric pressure chemical ionization mass spectrometry (NP-HPLC-APCI-MS) analysis. Each of the long chain alkenones and long chain diols was separated and unambiguously identified from the accurate masses and characteristic fragmentation during multiple stage MS analysis (MS2). Comparison of conventional GC and HPLC-MS methods showed similar results for UK'37 and LDI, respectively, using diverse environmental samples and an Emiliania huxleyi culture. Including the three sea surface temperature (SST) proxies; the NP-HPLC-APCI-MS method in fact allows simultaneous determination of nine paleoenvironmental proxies. The extent to which the ecology of the source organisms (ecological bias) influences lipid composition and thereby the reconstructed temperature values was demonstrated by applying the new method to a sediment core from the Sea of Marmara, covering the last 21 kyr BP. Reconstructed SST values differed considerably between the proxies for the Last Glacial Maximum (LGM) and the period of Sapropel S1 formation at ca. 10 kyr BP, whereas the trends during the late Holocene were similar. Changes in the composition of alkenone-producing species at the transition from the LGM to the Bølling/Allerød (B/A) were inferred from unreasonably high UK'37-derived SST values (ca. 20 °C) during the LGM. We ascribe discrepancies between the reconstructed temperature records during S1 deposition to habitat change, e.g. a different depth due to changes in nutrient availability.
Resumo:
Gas hydrates represent one of the largest pools of readily exchangeable carbon on Earth's surface. Releases of the greenhouse gas methane from hydrates are proposed to be responsible for climate change at numerous events in geological history. Many of these inferred events, however, were based on carbonate carbon isotopes which are susceptible to diagenetic alterations. Here we propose a molecular fossil proxy, i.e., the "Methane Index (MI)", to detect and document the destabilization and dissociation of marine gas hydrates. MI consists of the relative distribution of glycerol dibiphytanyl glycerol tetraethers (GDGTs), the core membrane lipids of archaea. The rational behind MI is that in hydrate-impacted environments, the pool of archaeal tetraether lipids is dominated by GDGT-1, -2 and -3 due to the large contribution of signals from the methanotrophic archaeal community. Our study in the Gulf of Mexico cold-seep sediments demonstrates a correlation between MI and the compound-specific carbon isotope of GDGTs, which is strong evidence supporting the MI-methane consumption relationship. Preliminary applications of MI in a number of hydrate-impacted and/or methane-rich environments show diagnostic MI values, corroborating the idea that MI may serve as a robust indicator for hydrate dissociation that is useful for studies of global carbon cycling and paleoclimate change.
Resumo:
The Mediterranean Sea is at the transition between temperate and tropical air masses and as such of importance for studying climate change. The Gulf of Taranto and adjacent SW Adriatic Sea are at the heart of this region. Their sediments are excellently suited for generating high quality environmental records for the last millennia with a sub-decadal resolution. The quality of these records is dependent on a careful calibration of the transfer functions used to translate the sedimentary lipid signals to the local environment. Here, we examine and calibrate the UK'37 and TEX86 lipid-based temperature proxies in 48 surface sediments and relate these to ambient sea surface temperatures and other environmental data. The UK'37-based temperatures in surface sediments reflect winter/spring sea surface temperatures in agreement with other studies demonstrating maximum haptophyte production during the colder season. The TEX86-based temperatures for the nearshore sites also reflect winter sea surface temperatures. However, at the most offshore sites, they correspond to summer sea surface temperatures. Additional lipid and environmental data including the distribution of the BIT index and remote-sensed chlorophyll-a suggest a shoreward increase of the impact of seasonal and spatial variability in nutrients and control of planktonic archaeal abundance by primary productivity, particle loading in surface waters and/or overprint by a cold-biased terrestrial TEX86 signal. As such the offshore TEX86 values seem to reflect a true summer signal to the effect that offshore UK'37 and TEX86 reconstruct winter and summer temperature, respectively, and hence provide information on the annual temperature amplitude.
Resumo:
A valid assessment of selective aerobic degradation on organic matter (OM) and its impact on OM-based proxies is vital to produce accurate environmental reconstructions. However, most studies investigating these effects suffer from inherent environmental heterogeneities. In this study, we used surface samples collected along two meter-scale transects and one longer transect in the northeastern Arabian Sea to constrain initial OM heterogeneity, in order to evaluate selective aerobic degradation on temperature, productivity and alteration indices at the sediment-water interface. All of the studied alteration indices, the higher plant alkane index, alcohol preservation index, and diol oxidation index, demonstrated that they are sensitive indicators for changes in the oxygen regime. Several export production indices, a cholesterol-based stanol/stenol index and dinoflagellate lipid- and cyst-based ratios, showed significant (more than 20%) change only over the lateral oxygen gradients. Therefore, these compounds do not exclusively reflect surface water productivity, but are significantly altered after deposition. Two of the proxies, glycerol dibiphytanyl glycerol tetraether-based TEX86 sea surface temperature indices and indices based on phytol, phytane and pristane, did not show any trends related to oxygen. Nevertheless, unrealistic sea surface temperatures were obtained after application of the TEX86, TEX86L, and TEX86H proxies. The phytol-based ratios were likely affected by the sedimentary production of pristane. Our results demonstrate the selective impact of aerobic organic matter degradation on the lipid and palynomorph composition of surface sediments along a short lateral oxygen gradient and suggest that some of the investigated proxies may be useful tracers of changing redox conditions at the sediment-water interface.