52 resultados para Acoustic properties.


Relevância:

40.00% 40.00%

Publicador:

Resumo:

To reconstruct the deep-water circulation for the last 3.5 Ma from deep-sea sediments of the eastern equatorial Atlantic, sea floor morphology, sub-bottom reflectors and the echo character have been mapped on the basis of 3.5 kHz records and sediment cores. Physical properties of sediments and synthetic seismograms derived from them enable us to decipher reflector sequences in environments of pelagic, current-resuspended and turbidity sedimentation. The individual reflectors originate from carbonate dissolution, hiatus, coarse sand layers and interferences. Those which are related to carbonate dissolution and hiatus provide evidence of water-mass boundaries by their distribution. Five phases of different deep-water circulation can be seen in the record of th elast 3.5 Ma, and these are related to climate history: 1. Between 3.7 Ma and 2.2 Ma a strong deep-water circulation indicates a northward flow of bottom water below 4200 m (AABW = Antarctic-Bottom Water) and a southward flow of deep-water above 4200 m (NADW = North-Atlantic Deep Water). 2. Between 1.6 and 1.4 Ma a southward flow of bottom water below 4500 m and a diminished southward flow above 4500 m can be detected. This water-mass geometry can be interpreted by an expansion of the NADW-masses and a displacement of the AABW-masses during the same time. 3. Since 1.4 Ma a northward flow of a bottom-water current developed again. This current flow created a leeside sediment ridge in the southern part of the Kane Gap and furrows in the northern part of it. 4. Between 400,000 and 200,000 yrs B. P. the oceanic and atmospheric circulation increased. The strengthened oceanic circulation caused and increase in carbonate dissolution, which is documented by a traceable reflector from 2800 m to 4500 m water depth. At the same time an increase of the atmospheric circulation caused a drastic rise in the pelagic sediment accumulation (> 100 %) through an intensification of upwelling. This runs parallel with a higher oceanic productivity in the northern equatorial divergence zone and an enhanced supply of fluvial and probably eolian sediments from the Senegal and Guinea. 5. Before 10,000 yrs B. P. an erosive northward flowing bottom-water current prevailed below 4500 m water depth. After 10,000 yrs B.P. the bottom-water flow was sluggish and non erosive.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In weakly indurated, nannofossil-rich, deep-sea carbonates compressional wave velocity is up to twice as fast parallel to bedding than normal to it. It has been suggested that this anisotropy is due to alignment of calcite c-axes perpendicular to the shields of coccoliths and shield deposition parallel to bedding. This hypothesis was tested by measuring the preferred orientation (fabric) of calcite c-axes in acoustic anisotropic, calcareous DSDP sediment samples by X-ray goniometry, and it was found that the maximum c-axis concentrations are by far too low to explain the anisotropies. The X-ray method is subject to a number of uncertainties due to preparatory and technical shortcomings in weakly indurated rocks. The most serious weaknesses are: sample preparation, volume of measured sample (fraction of a mm3), beam defocusing and background intensity corrections, combination of incomplete pole figures, and necessity of recalculation of the c-axis orientations from other crystallographic directions. Goniometry using thermal neutrons overcomes most of these difficulties, but it is time consuming. We test the interferences made about velocity anisotropy by X-ray studies about the concentration of c-axes in deep-sea carbonates by employing neutron texture goniometry to eight DSDP samples comprising mostly nannofossil material. Fabric and sonic velocity were determined directly on the core specimens, thus from the same rock volume and requiring no preparation. The c-axis orientation is obtained directly from the [0006] calcite diffraction peak without corrections. The fabrics are clearly defined, but weak (1.1 to 1.86 times uniform) with the maximum about normal to bedding. They have crudely orthorhombic symmetry, but are not axisymmetric around the bedding normal. The observed c-axis intensities, although higher than determined by the X-ray method on other samples, are by far too low to explain the observed acoustic anisotropies.