24 resultados para Absorption cross sections.
Resumo:
Cool tropical sea surface temperatures (SSTs) are reported for warm Paleogene greenhouse climates based on the d18O of planktonic foraminiferal tests. These results are difficult to reconcile with models of greenhouse gas-forced climate. It has been suggested that this "cool tropics paradox" arises from postdepositional alteration of foraminiferal calcite, yielding erroneously high d18O values. Recrystallization of foraminiferal tests is cryptic and difficult to quantify, and the compilation of robust d18O records from moderately altered material remains challenging. Scanning electron microscopy of planktonic foraminiferal chamber-wall cross sections reveals that the basal area of muricae, pustular outgrowths on the chamber walls of species belonging to the genus Morozovella, contain no mural pores and may be less susceptible to postdepositional alteration. We analyzed the d18O in muricae bases of morozovellids from the central Pacific (Ocean Drilling Program Site 865) by ion microprobe using 10 ?m pits with an analytical reproducibility of ±0.34 per mil (2 standard deviations). In situ measurements of d18O in these domains yield consistently lower values than those published for conventional multispecimen analyses. Assuming that the original d18O is largely preserved in the basal areas of muricae, this new d18O record indicates Early Paleogene (~49-56 Ma) tropical SSTs in the central Pacific were 4°-8°C higher than inferred from the previously published d18O record and that SSTs reached at least ~33°C during the Paleocene-Eocene thermal maximum. This study demonstrates the utility of ion microprobe analysis for generating more reliable paleoclimate records from moderately altered foraminiferal tests preserved in deep-sea sediments.
Resumo:
yResults of 13 field investigations between 1966 and 1990 of the southwestern to eastern margin of Kötlujökull and its proglacial area are summarized with respect to sandar and their formation. Generally, the results are based on sedimentological examinations in the field and laboratory, on analyses of aerial photographs, and investigations of the glacier slope. The methods permitted a more detailed reconstruction of sandar evolution in the proglacial area of Kötlujökull since 1945, of tendencies in development and of single data going back until the last decades of the 19th century. Accordingly, there existed special periods of "flachsander"-formations with raised coarsegrained "sanderwurzels" resultant from the outbreak of subglacial meltwater tunneloutlets and other periods with "hochsander-"formations by supraglacial drainage. At present the belts of hochsanders in front of the glacier come up to more than 4 m in thickness and 1000 m in width, therefore containing perhaps more sediment direct in front of Kötlujökull than the old belts of flachsanderwurzels. In one case the explosion-like subglacial meltwater outburst combined with the genesis of a sanderwurzel could be observed for a time and is thoroughly discussed. The event is referred to the outburst of a sub- to inglacial meltwater body being under extreme hydrostatic press ures which is combined with the genesis of a new subglacial tunneloutlet as a new flachsander. Often these outbursts led to the destruction of a morainic belt more than 1000 m in width. Presumably the whole event was finished in not more than a few days. In addition to a characteristic pear-shaped form and water-moved stones up to diameters of 1 m the wurzels possess a single "main-channel" with rectangular cross-sections as far as 4 m deep and 50 m wide just as small flat channels resembling fish bones in connection with the main channel. Presumably, they have been active only in the last stage of wurzel formation. With regard to the subglacial tunnel gates long-living L-meltwater outlets are distinguished from short-living K-meltwater outlets. These are always combined with a raised coarse-grained sanderwurzel, but its meltwater discharge is generally decreasing and ceases after some years, whereas the discharge of L-meltwater outlets continues unchanged for long times (except seasonal differences). The material of flachsanders is preponderantly composed of mugearitic and andesitic cobble extending at least for some kilometres from the glacier margin, whereas the hochsanders correspond to medium to coarse sands without clay and without alternations into the direction of flow. The hochsander fans are covered with small braidet channels. Their sedimentary structures are determined by the short time changing of supraglacial meltwater discharge and the upper flow regime combined with the development of antidunes, which rule the channel-flows during the main activity periods in summer. Unlike the subglacial drainage the supraglacial drainage led to only weak effects of erosion on the glacier foreland. So the hochsanders refilled depressions of morainic areas or grew up on older flachsanderwurzels. Whereas all large flachsanders developed in front of approximate stationary glacier margins, the evolution of coherent belts of hochsanders were combined with progressive glacier fronts. On the other hand, there was obviously no evolution at all of large sandar in front of back-melting margins of Kötlujökull. Based on examinations of the glacier surface and on analyses of aerial photographs the different types of sandar are referred to different structures of the glacier snout. Finally chances of surviving of sandar in the proglacial area of Kötlujökull are shortly discussed just as the possibility of an application of the Islandic research results on Pleistocene sandar in northern Germany.
Resumo:
Envisat Advanced Synthetic Aperture Radar (ASAR) Wide Swath Mode (WSM) images are used to derive C-band HH-polarization normalized radar cross sections (NRCS). These are compared with ice-core analysis and visual ship-based observations of snow and ice properties observed according to the Antarctic Sea Ice Processes and Climate (ASPeCt) protocol during two International Polar Year summer cruises (Oden 2008 and Palmer 2009) in West Antarctica. Thick first-year (TFY) and multi-year (MY) ice were the dominant ice types. The NRCS value ranges between -16.3 ± 1.1 and -7.6 ± 1.0 dB for TFY ice, and is -12.6 ± 1.3 dB for MY ice; for TFY ice, NRCS values increase from ~-15 dB to -9 dB from December/January to mid-February. In situ and ASPeCt observations are not, however, detailed enough to interpret the observed NRCS change over time. Co-located Advanced Microwave Scanning Radiometer-Earth Observing System (AMSR-E) vertically polarized 37 GHz brightness temperatures (TB37V), 7 day and 1 day averages as well as the TB37V difference between ascending and descending AMSR-E overpasses suggest the low NRCS values (-15 dB) are associated with snowmelt being still in progress, while the change towards higher NRCS values (-9dB) is caused by commencement of melt-refreeze cycles after about mid-January.
Resumo:
Lobsigensee is a small kettle hole lake 15 km north-west of Bern on the Swiss Plateau, at an altitude of 514 m asl. Its surface is 2ha today, its maximum depth 2.7 m; it has no inlet and the overflow functions mainly during snow melting. The area was covered by Rhone ice during the Last Glaciation (map in Fig.2). Local geology, climate and vegetation are summarized in Figure 3A-C, the history of settlement in Figures 5-7. In order to reconstruct the vegetational and environmental history of the lake and its surroundings pollen analysis and other bio- and isotope stratigraphies were applied to twelve profiles cored across the basin with modified Livingstone corers (Fig.3 D). (1) The standard diagram: The central core LQ-90 is described as the standard pollen diagram (Chapter 3) with 10 local pollen assemblage zones of the Late-Glacial (local PAZ Ll to Ll0, from about 16'000(7) to 10'000 years BP) and 20 PAZ of the Holocene (local PAZ L11 to L30), see Figs. 8-10 and 20-24. Local PAZ L 1 to L3 are in the Late-Glacial clay and record the vegetational development after the ice retreat: L1 shows very low pollen concentration and high Pinus percentages due to long-distance transport and reworking; the latter mechanism is corroborated by the findings of thermophilous and pre-Quaternary taxa. Local PAZ L2 has a high di versi ty of non-arboreal pollen (NAP) and reflects the Late-Glacial steppe rich in heliophilous species. Local PAZ L3 is similar but additionally rich in Betula nana and Sal1x, thus reflecting a "shrub tundra". The PAZ L1 to L3 belong to the Oldest Dryas biozone. Local PAZ L4 to L 10 are found in the gyttja of the profundal or in the lake marl of the littoral and record the Late-Glacial forests. L4 is the shrub phase of reforestation with very high Junlperus and rapidly increasing Betula percentages. L5 is the PAZ with a first, L7 with a second dominance of tree-birches, separated by L6 showing a depression in the Betula curve. L4 to L7 can be assigned to the Balling biozone. Possible correlation of the Betula depression to the Older Dryas biozone is discussed. In local PAZ L8 Plnus immigrates and expands. L9 shows a facies difference in that Plnus dominates over Betula in littoral but not in profundal spectra. L8 and L9 belong to the Allerod biozone. In its youngest part the volcanic ash from Laach/Eifel is regularly found (11,000 BP). The local PAZ Ll0 corresponds to the Younger Dryas blozone. The merely slight increase of the NAP indicates that the pine forests of the lowland were not strongly affected by a cooler climate. In order to evaluate the significance of the littoral accumulation of coniferous pollen the littoral profile LQ-150 is compared to the profundal. Radiocarbon stratigraphies derived from different materials are presented in Figures 13 and 14 and in Tables 2 and 3. The hard-water errors in the gyttja samples and the carbonate samples are similar. The samples of terrestrial plant macrofossils are not affected by hard-water errors. Two plateaux of constant age appear in the age-depth relationship; their consequence for biostratigraphy as well as pollen concentration and influx diagrams are discussed. Radiocarbon ages of the Late-Glacial pollen zones are shown in Table 10. The Holocene vegetational history is recorded in the local PAZ L 11 to L30. After a Preboreal (PAZ L11) dominated by pine and birch the expansions of Corylus, Ulmus and Quercus are very rapid. Among these taxa Corylus dominates dur ing the Boreal (PAZ L 12 and L 1 3), whereas the components of the mixed oak forest dominate in the Older Atlantic (PAZ L14 to L16). In the Younger Atlantic (PAZ L 17 to L 19) Fagus and Alnus play an increasing, the mixed oak forest a decreasing role. During the period of local PAZ L19 Neolithic settlers lived on the shore of Lobsigensee. During the Subboreal (PAZ L20 and L21) and the Older Subatlantic (L22 to L25) strong fluctuations of Fagus and often antagonistic peaks of NAP, Alnus, Betula and Corylus can be interpreted as signs of human impact on vegetation. L23 is characterized not only by high values of NAP (especially apophytes and anthropochorous species) but also by the appearance of Juglans, Castanea and Secale which point to the Roman colonization of the area. For a certain period during the Younger Subatlantic (PAZ L26 to L30) the lake was used for retting hemp (Cannabis). Later the dominance of Quercus pollen indicates the importance of wood pastures. The youngest sediments reflect the wide-spread agricultural grass lands and the plantation of Pinus and Picea. Radiocarbon dates for the Holocene are given in Figure 23 and Table 4, the extrapolated ages of the Holocene pollen zones in Table 15. (2) The cross sections: Figures 25 and 26 give a summary of the litho- and palynostratigraphy of the two cross sections. Based on 11 Late-Glacial and 9 Holocene pollen diagrams (in addition to the standard ones), the consistency of the criteria for the definition of the pollen zones is examined in Tables 7 and 8 for the Late-Glacial and in Tables 11 to 14 for the Holocene. Sediment thicknesses across the basin for each pollen zone are presented in these tables as well as in Figures 43 to 45 for the Late-Glacial and in Figures 59 to 65 for the Holocene. Sediment focusing can explain differences between the gyttja cores of the profundal. Focusing is more than compensated for through "stretching" by carbonate precipitation on the littoral terrace. Pollen influx to the cross section are discussed (Chapters 4.1.5. and 4.2.3.). (3) The regional pollen zones: Based on some selected sites between Lake Geneva and Lake Constance regional pollen zones are proposed (Table 16, 17 and 19). (4) Paleoecology: Climatic change in the Late-Glacial can be inferred from Coleoptera, Trichoptera, Chironomidae and d18O of carbonates: a distinct warming is recorded around 12' 600 BP and around 10' 000 BP. The Younger Dryas biozone (10'700-10'000 BP) was the only cooling found in the Late-Glacial. The Betula depression often correlated wi th the Older Dryas biozone was possibl not colder but dryer than the previous period. During the Holocene the lowland site is not very sensitive to the minor climatic changes. Table 22 summarizes climatic and trophic changes before 8'000 BP as deduced from various biostratigraphies studied by a number of authors. Ostracods, Chironomids and fossil pigments indicate that anoxic conditions prevailed during the BoIling (possibly meromixis). Changes in the lake level are illustrated in Figure 74. A first lake-level lowering occurred in the early Holocene (10'000 to 9'000 BP), a second during the Atlantic (about 6'800 to 5'200 BP). The first "shrinking" of the lake volume resulted in a eutrophication recorded by laminations in the profundal and by pigments of Cyanophyceae. The second fall in water level corresponds to an increase of Nymphaeaceae. Human impact can be inferred in three ways: eutrophication of the lake (since the Neolithic), changes of terrestrial vegetation by deforestations (cyclicity of Fagus, see Figures 78 to 80), and enhanced erosion (increasing sedimentation rates by inwashed clay, particularly since the Roman Colonization, see Figures 49 and 81). Summary: This paper was planned as the final report on Lobsigensee. However, a number of issues are not answered but can only be asked more precisely, for example: (1) For the two periods with the highest rates of change, Le. the Bolling and the Preboreal biozones, pollen influx may reflect vegetation dynamics. Detailed investigations of these periods in annually laminated sediments are planned. (2) Biostratigraphies other than palynostratigraphy are needed to estimate the degree of linkage or independence in the development of terrestrial and lacustrine ecosystems. Often our sampling intervals were not identical, thus influencing our temporal resolution. (3) 6180- and 14C-stratigraPhies with high resolution will elucidate the leads and lags of these dynamic periods. Plateaux of constant age in the age-depth relationship have a strong bearing on both biological and geophysical understanding of Late-Glacial and early Holocene developments. (4) Numerical methods applied to the pollen diagrams of the cross section will help to quantify the significance of similari ties and dissimilarities across a single basin (with Prof. Birks). (5) Numerical methods applied to different sites on the Swiss Plateau and on the transect across the Alps will be helpful in evaluating the influence of different environmental factors (with Prof. Birks). (6) A new map 1: 1000 with 50cm-contour lines prov ided by Prof. Zurbuchen will be combined with a grid of cores sampling the transition from lake marl to peat enabling us to calculate paleo-volumes of the lake. This is interesting for the two "shrinking periods" (in Fig. 74A numbers 2-6 and 7-10), both accompanied by eutrophication. The pal eo-volume during the Neoli thic set tlement of the Cortaillod culture linked wi th an est l.mate of trophic change derived from diatoms (Prof. Smol in prep.) could possibly give an indication of the size of the human population of this period. (7) For the period with the antagonism between Fagus peaks and ABC-peaks close collaboration between palynologists, geochemists and archeologists should enable us to determine the influence of prehistoric and historic people on vegetation (collaboration with Prof. Stockli and Prof. Herzig). (8) The core LL-75 taken with a "cold letter box" will be analysed for major and trace elements by Dr. Sturm for 210pb and 137Cs by Prof.von Gunten and for pollen. We will see if our local PAZ L30 really corresponds to the surface sediment and if the small seepage lake reflects modern pollution.
Resumo:
Conceptualization of groundwater flow systems is necessary for water resources planning. Geophysical, hydrochemical and isotopic characterization methods were used to investigate the groundwater flow system of a multi-layer fractured sedimentary aquifer along the coastline in Southwestern Nicaragua. A geologic survey was performed along the 46 km2 catchment. Electrical resistivity tomography (ERT) was applied along a 4.4 km transect parallel to the main river channel to identify fractures and determine aquifer geometry. Additionally, three cross sections in the lower catchment and two in hillslopes of the upper part of the catchment were surveyed using ERT. Stable water isotopes, chloride and silica were analyzed for springs, river, wells and piezometers samples during the dry and wet season of 2012. Indication of moisture recycling was found although the identification of the source areas needs further investigation. The upper-middle catchment area is formed by fractured shale/limestone on top of compact sandstone. The lower catchment area is comprised of an alluvial unit of about 15 m thickness overlaying a fractured shale unit. Two major groundwater flow systems were identified: one deep in the shale unit, recharged in the upper-middle catchment area; and one shallow, flowing in the alluvium unit and recharged locally in the lower catchment area. Recharged precipitation displaces older groundwater along the catchment, in a piston flow mechanism. Geophysical methods in combination with hydrochemical and isotopic tracers provide information over different scales and resolutions, which allow an integrated analysis of groundwater flow systems. This approach provides integrated surface and subsurface information where remoteness, accessibility, and costs prohibit installation of groundwater monitoring networks.
Resumo:
The ~46-m.y.-old igneous basement cored during Leg 200 in the North Pacific represents one of the few cross sections of Pacific oceanic crust with a total penetration into basalt of >100 m. The rocks, emplaced during the Eocene at a fast-spreading rate (~14 cm/yr; full rate) are strongly differentiated tholeiitic basalts (ferrobasalts) with 7-4.5 wt% MgO, relatively high TiO2 (2-3.5 wt%), and total iron as Fe2O3 (9.1-16.8 wt%). The differentiated character of these lavas is related to unusually large amounts of crystallization differentiation of plagioclase, clinopyroxene, and olivine. The lithostratigraphy of the basement (cored to ~170 meters below seafloor) is divided into three units. The deepest unit (lithologic Unit 3), is a succession of lava flows of no more that a few meters thickness each. The intermediate unit (lithologic Unit 2) is represented by intermixed thin flows and pillows, whereas the shallowest unit (lithologic Unit 1), comprises two massive flows. The rocks range from aphyric to sparsely clinopyroxene-plagioclase-phyric (phenocryst content = <3 vol%) and from holocrystalline to hypohyaline. Chilled margins of pillow fragments show holohyaline to sparsely vitrophyric textures. Site 1224 oxide minerals present a type of alteration not previously seen, where titanomagnetite is only partially destroyed and the pure magnetite component is partially removed from the mineral, leaving, in the most extreme case, a nearly pure ulvöspinel residuum. As a result of this dissolution, iron, mainly in the oxidized state, is added to the circulating solvent fluids. This means that a considerable metal source can result from low-temperature reactions throughout the upper ocean crust. The coarsest-grained lithologic Unit 1 rocks have interstitial myrmekitic intergrowths of quartz and sodic plagioclase (~An12), roughly similar in mineralogy and bulk composition to tonalite/trondhjemite veinlets in abyssal gabbros from the southwest Indian Ocean and Hess Deep, eastern equatorial Pacific. Based on idiomorphic relationships and projections into the simplified Q-Ab-Or-H2O granite ternary system, the myrmekitic intergrowths formed at the same time as, or just after, the oxide minerals coprecipitated and at low water vapor pressure (~0.5 kbar). Their compositions correspond to SiO2-oligoclase intergrowths that are considerably less potassic than dacitic glasses that erupt, although rarely, along the East Pacific Rise or that have been produced experimentally by partial melting of gabbro. Based on the crystallization history and comparison to experimental data, the original interstitial siliceous liquids resulted from late-stage immiscible separation of siliceous and iron-rich liquids. The rare andesitic lavas found along the East Pacific Rise may be hybrid rocks formed by mixing of these immiscible siliceous melts with basaltic magma.
Resumo:
The Tara Oceans Expedition (2009-2013) sampled the world oceans on board a 36 m long schooner, collecting environmental data and organisms from viruses to planktonic metazoans for later analyses using modern sequencing and state-of-the-art imaging technologies. Tara Oceans Data are particularly suited to study the genetic, morphological and functional diversity of plankton. The present data set provides continuous measurements made with a FRRF instrument, operating in a flow-through mode during the 2009-2012 part of the expedition. It operates by exciting chlorophyll fluorescence using a series of short flashes of controlled energy and time intervals (Kolber et al, 1998). The fluorescence transients produced by this excitation signal were analysed in real-time to provide estimates of abundance of photosynthetic pigments, the photosynthetic yields (Fv/Fm), the functional absorption cross section (a proxy for efficiency of photosynthetic energy acquisition), the kinetics of photosynthetic electron transport between Photosystem II and Photosystem I, and the size of the PQ pool. These parameters were measured at excitation wavelength of 445 nm, 470nm, 505 nm, and 535 nm, allowing to assess the presence and the photosynthetic performance of different phytoplankton taxa based on the spectral composition of their light harvesting pigments. The FRRF-derived photosynthetic characteristics were used to calculate the initial slope, the half saturation, and the maximum level of Photosynthesis vs Irradiance relationship. FRRF data were acquired continuously, at 1-minute time intervals.
Resumo:
Sedimentary processes in the southeastern Weddell Sea are influenced by glacial-interglacial ice-shelf dynamics and the cyclonic circulation of the Weddell Gyre, which affects all water masses down to the sea floor. Significantly increased sedimentation rates occur during glacial stages, when ice sheets advance to the shelf edge and trigger gravitational sediment transport to the deep sea. Downslope transport on the Crary Fan and off Dronning Maud and Coats Land is channelized into three huge channel systems, which originate on the eastern-, the central and the western Crary Fan. They gradually turn from a northerly direction eastward until they follow a course parallel to the continental slope. All channels show strongly asymmetric cross sections with well-developed levees on their northwestern sides, forming wedge-shaped sediment bodies. They level off very gently. Levees on the southeastern sides are small, if present at all. This characteristic morphology likely results from the process of combined turbidite-contourite deposition. Strong thermohaline currents of the Weddell Gyre entrain particles from turbidity-current suspensions, which flow down the channels, and carry them westward out of the channel where they settle on a surface gently dipping away from the channel. These sediments are intercalated with overbank deposits of high-energy and high-volume turbidity currents, which preferentially flood the left of the channels (looking downchannel) as a result of Coriolis force. In the distal setting of the easternmost channel-levee complex, where thermohaline currents are directed northeastward as a result of a recirculation of water masses from the Enderby Basin, the setting and the internal structures of a wedge-shaped sediment body indicate a contourite drift rather than a channel levee. Dating of the sediments reveals that the levees in their present form started to develop with a late Miocene cooling event, which caused an expansion of the East Antarctic Ice Sheet and an invigoration of thermohaline current activity.
Resumo:
Over 300 surface sediment samples from the Central and South Atlantic Ocean and the Caribbean Sea were investigated for the preservation state of the aragonitic test of Limacina inflata. Results are displayed in spatial distribution maps and are plotted against cross-sections of vertical water mass configurations, illustrating the relationship between preservation state, saturation state of the overlying waters, and overall water mass distribution. The microscopic investigation of L. inflata (adults) yielded the Limacina dissolution index (LDX), and revealed three regional dissolution patterns. In the western Atlantic Ocean, sedimentary preservation states correspond to saturation states in the overlying waters. Poor preservation is found within intermediate water masses of southern origin (i.e. Antarctic intermediate water (AAIW), upper circumpolar water (UCDW)), which are distinctly aragonite-corrosive, whereas good preservation is observed within the surface waters above and within the upper North Atlantic deep water (UNADW) beneath the AAIW. In the eastern Atlantic Ocean, in particular along the African continental margin, the LDX fails in most cases (i.e. less than 10 tests of L. inflata per sample were found). This is most probably due to extensive "metabolic" aragonite dissolution at the sediment-water interface combined with a reduced abundance of L. inflata in the surface waters. In the Caribbean Sea, a more complex preservation pattern is observed because of the interaction between different water masses, which invade the Caribbean basins through several channels, and varying input of bank-derived fine aragonite and magnesian calcite material. The solubility of aragonite increases with increasing pressure, but aragonite dissolution in the sediments does not simply increase with water depth. Worse preservation is found in intermediate water depths following an S-shaped curve. As a result, two aragonite lysoclines are observed, one above the other. In four depth transects, we show that the western Atlantic and Caribbean LDX records resemble surficial calcium carbonate data and delta13C and carbonate ion concentration profiles in the water column. Moreover, preservation of L. inflata within AAIW and UCDW improves significantly to the north, whereas carbonate corrosiveness diminishes due to increased mixing of AAIW and UNADW. The close relationship between LDX values and aragonite contents in the sediments shows much promise for the quantification of the aragonite loss under the influence of different water masses. LDX failure and uncertainties may be attributed to (1) aragonite dissolution due to bottom water corrosiveness, (2) aragonite dissolution due to additional CO2 release into the bottom water by the degradation of organic matter based on an enhanced supply of organic matter into the sediment, (3) variations in the distribution of L. inflata and hence a lack of supply into the sediment, (4) dilution of the sediments and hence a lack of tests of L. inflata, or (5) redeposition of sediment particles.