988 resultados para AWI
Resumo:
Pteropods are an important component of the zooplankton community and hence of the food web in the Fram Strait. They have a calcareous (aragonite) shell and are thus sensitive in particular to the effects of the increasing CO2 concentration in the atmosphere and the associated changes of pH and temperature in the ocean. In the eastern Fram Strait, two species of thecosome pteropods occur, the cold water-adapted Limacina helicina and the subarctic boreal species Limacina retroversa. Both species were regularly observed in year-round moored sediment traps at ~ 200-300 m depth in the deep-sea long-term observatory HAUSGARTEN (79°N, 4°E). The flux of all pteropods found in the trap samples varied from < 20 to ~ 870 specimen/m**2/d in the years 2000-2009, being lower during the period 2000-2006. At the beginning of the time series, pteropods were dominated by the cold-water-adapted L. helicina, whereas the subarctic boreal L. retroversa was only occasionally found in large quantities (> 50/m**2/d). This picture completely changed after 2005/6 when L. retroversa became dominant and total pteropod numbers in the trap samples increased significantly. Concomitant to this shift in species composition, a warming event occurred in 2005/6 and persisted until the end of the study in 2009, despite a slight cooling in the upper water layer after 2007/8. Sedimentation of pteropods showed a strong seasonality, with elevated fluxes of L. helicina from August to November. Numbers of L. retroversa usually increased later, during September/October, with a maximum at the end of the season during December/January. In terms of carbonate export, aragonite shells of pteropods contributed with 11-77% to the annual total CaCO3 flux in Fram Strait. The highest share was found in the period 2007 to 2009, predominantly during sedimentation events at the end of the year. Results obtained by sediment traps occasionally installed on a benthic lander revealed that pteropods also arrive at the seafloor (~ 2550 m) almost simultaneous with their occurrence in the shallower traps. This indicates a rapid downward transport of calcareous shells, which provides food particles for the deep-sea benthos during winter when other production in the upper water column is shut down. The results of our study highlight the great importance of pteropods for the biological carbon pump as well as for the carbonate system in Fram Strait at present, and indicate modifications within the zooplankton community. The results further emphasize the importance of long-term investigation to disclose such changes.
AWI Bathymetric Chart of the Fram Strait (BCFS) Sheet 581-29-3 Hovgaard Ridge West (Scale 1:100,000)
AWI Bathymetric Chart of the Fram Strait (BCFS) Sheet 581-29-4 Hovgaard Ridge East (Scale 1:100,000)
Resumo:
Time series length-frequency data are presented for Themisto amphipods collected as swimmers by moored sediment traps since 2000 at the AWI deep-sea observatory HAUSGARTEN (79°N/4°E) in the eastern Fram Strait. Amphipod occurrences increased significantly from 2000 to 2009 at 200-300 m depth, and the North Atlantic species Themisto compressa was continuously present in the samples starting in 2004. We present year-round records of large adult Themisto amphipods, including the appearance of Themisto libellula with a total body length of up to 56.7 mm and juveniles starting from 4.0 mm. The length of Themisto abyssorum ranged from 4.2 to 25.6 mm, whereas it varied for Themisto compressa from 8.8 to 24.4 mm. Length-frequency analysis indicated a life span of 2 years for T. abyssorum and at least 3 years for T. libellula. The absence of juveniles for T. compressa suggested its reproduction in southern subarctic areas and its occasional northward migration with warmer Atlantic water into the eastern Fram Strait. The seasonal and long-term size structures of the three pelagic species were consistent over the course of the study, indicating no changes occurred in cohort development due to increasing abundances or warming water temperatures.
Resumo:
Pteropods are important organisms in high-latitude ecosystems, and they are expected to severely suffer from climate change in the near future. In this study, sedimentation patterns of two pteropod species, the polar Limacina helicina and the subarctic boreal L. retroversa, are presented. Time series data received by moored sediment traps at the Long-Term Ecological Research (LTER) Observatory HAUSGARTEN in eastern Fram Strait were analyzed during the years 2008 to 2012. Results were derived from four different deployment depths (~200, 1,250, 2,400, and 2,550 m) at two different sites (79° N, 04°20' E; 79°43' N, 04°30' E). A species-specific sedimentation pattern was present at all depths and at both sites showing maximal flux rates during September/October for L. helicina and in November/December for L. retroversa. The polar L. helicina was outnumbered by L. retroversa (55-99 %) at both positions and at all depths supporting the recently observed trend toward the dominance of the subarctic boreal species. The largest decrease in pteropod abundance occurred within the mesopelagic zone (~200-1,250 m), indicating loss via microbial degradation and grazing. Pteropod carbonate (aragonite) amounted up to ~75 % of the total carbonate flux at 200 m and 2-13 % of the aragonite found in the shallow traps arrived at the deep sediment traps (~160 m above the seafloor), revealing the significance of pteropods in carbonate export at Fram Strait. Our results emphasize the relevance and the need for continuation of long-term studies to detect and trace changes in pteropod abundances and community composition and thus in the vertical transport of aragonite.