27 resultados para APCI


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Anaerobic ammonium oxidation (anammox) has been recognized as an important process converting fixed nitrogen to N2 in many marine environments, thereby having a major impact on the present-day marine nitrogen cycle. However, essentially nothing is known about the importance of anammox in past marine nitrogen cycles. In this study, we analyzed the distribution of fossil ladderane lipids, derived from bacteria performing anammox, in a sediment core from the northern Arabian Sea. Concentrations of ladderane lipids varied between 0.3 and 5.3 ng/g sediment during the past 140 ka, with high values observed during the Holocene, intervals during the last glacial, and during the penultimate interglacial. Maxima in ladderane lipid abundances correlate with high total organic carbon (4-6%) and elevated d15N (>8 per mil) values. Anammox activity, therefore, seems enhanced during periods characterized by an intense oxygen minimum zone (OMZ). Low concentrations of ladderanes (<0.5 ng/g sediment), indicating low-anammox activity, coincide with periods during which the OMZ was severely diminished. Since anammox activity covaried with OMZ intensity, it may play an important role in the loss of fixed inorganic nitrogen from the global ocean on glacial-interglacial timescales, which was so far attributed only to heterotrophic denitrification.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Hydroxylated glycerol dialkyl glycerol tetraethers (hydroxy-GDGTs) were detected in marine sediments of diverse depositional regimes and ages. Mass spectrometric evidence, complemented by information gleaned from two-dimensional (2D) 1H-13C nuclear magnetic resonance (NMR) spectroscopy on minute quantities of target analyte isolated from marine sediment, allowed us to identify one major compound as a monohydroxy-GDGT with acyclic biphytanyl moieties (OH-GDGT-0). NMR spectroscopic and mass spectrometric data indicate the presence of a tertiary hydroxyl group suggesting the compounds are the tetraether analogues of the widespread hydroxylated archaeol derivatives that have received great attention in geochemical studies of the last two decades. Three other related compounds were assigned as acyclic dihydroxy-GDGT (2OH-GDGT-0) and monohydroxy-GDGT with one (OH-GDGT-1) and two cyclopentane rings (OH-GDGT-2). Based on the identification of hydroxy-GDGT core lipids, a group of previously reported unknown intact polar lipids (IPLs), including the ubiquitously distributed H341-GDGT (Lipp J. S. and Hinrichs K. -U. (2009) Structural diversity and fate of intact polar lipids in marine sediments. Geochim. Cosmochim. Acta 73, 6816-6833), and its analogues were tentatively identified as glycosidic hydroxy-GDGTs. In addition to marine sediments, we also detected hydroxy-GDGTs in a culture of Methanothermococcus thermolithotrophicus. Given the previous finding of the putative polar precursor H341-GDGT in the planktonic marine crenarchaeon Nitrosopumilus maritimus, these compounds are synthesized by representatives of both cren- and euryarchaeota. The ubiquitous distribution and apparent substantial abundance of hydroxy-GDGT core lipids in marine sediments (up to 8% of total isoprenoid core GDGTs) point to their potential as proxies.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Although soil algae are among the main primary producers in most terrestrial ecosystems of continental Antarctica, there are very few quantitative studies on their relative proportion in the main algal groups and on how their distribution is affected by biotic and abiotic factors. Such knowledge is essential for understanding the functioning of Antarctic terrestrial ecosystems. We therefore analyzed biological soil crusts from northern Victoria Land to determine their pH, electrical conductivity (EC), water content (W), total and organic C (TC and TOC) and total N (TN) contents, and the presence and abundance of photosynthetic pigments. In particular, the latter were tested as proxies for biomass and coarse-resolution community structure. Soil samples were collected from five sites with known soil algal communities and the distribution of pigments was shown to reflect differences in the relative proportions of Chlorophyta, Cyanophyta and Bacillariophyta in these sites. Multivariate and univariate models strongly indicated that almost all soil variables (EC, W, TOC and TN) were important environmental correlates of pigment distribution. However, a significant amount of variation is independent of these soil variables and may be ascribed to local variability such as changes in microclimate at varying spatial and temporal scales. There are at least five possible sources of local variation: pigment preservation, temporal variations in water availability, temporal and spatial interactions among environmental and biological components, the local-scale patchiness of organism distribution, and biotic interactions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The tight coupling between the atmospheric and oceanic circulation in the equatorial Atlantic region makes this area an important region for paleoclimatic research. Previous studies report the occurrence of large amounts of terrigenous material and soil organic carbon (SOC) within the marine sediments of the eastern Gulf of Guinea. We use the accumulation rates (AR) of branched glycerol dialkyl glycerol tetraethers (GDGTs) to identify variations in SOC delivery to the Niger Fan over the last 35 ka, and compare these records to long-chain n-alkanes as a proxy for higher plant material, to an inorganic proxy for terrigenous input (aluminum AR) and to indicators for the marine productivity (AR of carbonate and crenarchaeol). In addition, sea surface temperatures (SSTs) are calculated based on the TEX86H index and environmental factors affecting the SST-reconstructions are discussed. Our results indicate that Al AR are closely connected to the rate of mean sea level change after 15 ka BP, with an additional influence of the increased monsoonal precipitation and extended vegetation cover corresponding to the African Humid Period (14.8-5.5 ka BP). Branched GDGT AR appears to be determined by shelf erosion in addition to the interplay of monsoonal precipitation and vegetation cover controlling soil erosion. Long-chain n-alkane concentrations clearly show a different trend than the other proxies, which might be due to their predominant eolian transport. Paleo-SSTs show a clear shift from colder temperatures during the last glacial period (20-22 °C) to warmer temperatures during the Holocene (24-26 °C). However, TEX86H-based SSTs are cold-biased compared to recent SSTs and Mg/Ca-based SST reconstructions, which is probably caused by a high seasonality of the Thaumarchaeota, with a maximum productivity of these organisms during the cold summer months. However, a sub-surface production of GDGTs and/or a potential bias of SST reconstruction by terrestrial input could not be completely excluded.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In the reconstruction of sea surface temperature (SST) from sedimentary archives, secondary sources, lateral transport and selective preservation are considered to be mainly negligible in terms of influencing the primary signal. This is also true for the archaeal glycerol dialkyl glycerol tetraethers (GDGTs) that form the basis for the TEX86 SST proxy. Our samples represent four years variability on a transect off Cape Blanc (NW Africa). We studied the subsurface production, vertical and lateral transport of intact polar lipids and core GDGTs in the water column at high vertical resolution on the basis of suspended particulate matter (SPM) samples from the photic zone, the subsurface oxygen minimum zone (OMZ), nepheloid layers (NL) and the water column between these. Furthermore we compared the water column SPM GDGT composition with that in underlying surface sediments. This is the first study that reports TEX86 values from the precursor intact polar lipids (IPLs) associated with specific head groups (IPL -specific TEX86). We show a clear deviation from the sea surface GDGT composition in the OMZ between 300 and 600 m. Since neither lateral transport nor selective degradation provides a satisfactory explanation for the observed TEX-derived temperature profiles with a bias towards higher temperatures for both core- and IPL -specific TEX86 values, we suggest that subsurface in situ production of archaea with a distinct relationship between lipid biosynthesis and temperature is the responsible mechanism. However, in the NW-African upwelling system the GDGT contribution of the OMZ to the surface sediments does not seem to affect the sedimentary TEX86 as it shows no bias and still reflects the signal of the surface waters between 0 and 60 m.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The transition from the last Glacial to the current Interglacial, the Holocene, represents an important period with climatic and environmental changes impacting ecosystems. In this study, we examined the interplay between the Indian Ocean Summer Monsoon (IOSM) and the Westerlies at lake Nam Co, southern Tibet to understand the climatic effects on the ecosystem. Different organic geochemical proxies (n-alkanes, glycerol dialkyl glycerol tetraethers, dD, d13Corg, d15N) are applied to reconstruct the environmental and hydrological changes on one of the longest available paleorecords at the Tibetan Plateau. Based on our paleohydrological dD proxies, the aquatic signal lags the terrestrial one due to specific ecological thresholds, which, in addition to climatic changes, can influence aquatic organisms. The aquatic organisms' response strongly depends on temperature and associated lake size, as well as pH and nutrient availability. Because the terrestrial vegetation reacts faster and more sensitively to changes in the monsoonal and climatic system, the dD of n-C29 and the reconstructed inflow water signal represent an appropriate IOSM proxy. In general, the interplay of the different air masses seems to be primarily controlled by solar insolation. In the Holocene, the high insolation generates a large land-ocean pressure gradient associated with strong monsoonal winds and the strongest IOSM. In the last glacial period, however, the weak insolation promoted the Westerlies, thereby increasing their influence at the Tibetan Plateau. Our results help to elucidate the variable IOSM, and they illustrate a remarkable shift in the lake system regarding pH, d13Corg and d15N from the last glacial to the Holocene interglacial period.