43 resultados para ALKYL ALKENOATES


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Subpolar regions are key areas to study natural climate variability, due to their high sensitivity to rapid environmental changes, particularly through sea surface temperature (SST) variations. Here, we have tested three independent organic temperature proxies (UK'37, TEX86 and LDI) on their potential applicability for SST reconstruction in the subpolar region around Iceland. UK'37, TEX86 and TEXL86 temperature estimates from suspended particulate matter showed a substantial discrepancy with instrumental data, while long chain alkyl diols were below detection limit in most of the stations. In the northern Iceland Basin, sedimenting particles revealed a seasonality in lipid fluxes i.e. high fluxes of alkenones and GDGTs were measured during late spring-summer, and high fluxes of long chain alkyl diols during late summer. The flux-weighted average temperature estimates had a significant negative (ca. 2.3°C for UK'37) and positive (up to 5°C for TEX86) offset with satellite-derived SSTs and temperature estimates derived from the underlying surface sediment. UK'37 temperature estimates from surface sediments around Iceland correlate well with summer mean sea surface temperatures, while TEX86 derived temperatures correspond with both annual and winter mean 0-200 m temperatures, suggesting a subsurface temperature signal. Anomalous LDI-SST values in surface sediments, and low mass flux of 1,13- and 1,15-diols compared to 1,14-diols, suggest that Proboscia diatoms are the major sources of long chain alkyl diols in this area rather than eustigmatophyte algae, and therefore the LDI cannot be applied in this region.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Authigenic phosphatic laminites enclosed in phosphorite crusts from the shelf off Peru (10°01' S and 10°24' S) consist of carbonate fluorapatite layers, which contain abundant sulfide minerals including pyrite (FeS2) and sphalerite (ZnS). Low d34Spyrite values (average -28.8 per mill) agree with bacterial sulfate reduction and subsequent pyrite formation. Stable sulfur isotopic compositions of sulfate bound in carbonate fluorapatite are lower than that of sulfate from ambient sea water, suggesting bacterial reoxidation of sulfide by sulfide-oxidizing bacteria. The release of phosphorus and subsequent formation of the autochthonous phosphatic laminites are apparently caused by the activity of sulfate-reducing bacteria and associated sulfide-oxidizing bacteria. Following an extraction-phosphorite dissolution-extraction procedure, molecular fossils of sulfate-reducing bacteria (mono-O-alkyl glycerol ethers, di-O-alkyl glycerol ethers, as well as the short-chain branched fatty acids i/ai-C15:0, i/ai-C17:0 and 10MeC16:0) are found to be among the most abundant compounds. The fact that these molecular fossils of sulfate-reducing bacteria are distinctly more abundant after dissolution of the phosphatic laminite reveals that the lipids are tightly bound to the mineral lattice of carbonate fluorapatite. Moreover, compared with the autochthonous laminite, molecular fossils of sulfate-reducing bacteria are: (1) significantly less abundant and (2) not as tightly bound to the mineral lattice in the other, allochthonous facies of the Peruvian crusts consisting of phosphatic coated grains. These observations confirm the importance of sulfate-reducing bacteria in the formation of the phosphatic laminite. Model calculations highlight that organic matter degradation by sulfate-reducing bacteria has the potential to liberate sufficient phosphorus for phosphogenesis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The thermal effects of three (one major and two minor) Miocene diabase intrusions on Cretaceous black shales from DSDP site 41-368 have been analyzed. A concentration gradient was observed, especially for the hydrocarbons, decreasing towards the major intrusion and between the three sills. The thermally-altered samples in the proximity of and between the sills contained elemental sulfur and an excess of thermally-derived pristane over phytane. whereas, the unaltered sediments contained no elemental sulfur, and more phytane than pristane. A maximum yield of the extractable hydrocarbons was observed at a depth of 7 m below the major sill. Two classes of molecular markers were present in this bitumen suite. The first was sesqui-, di- and triterpenoids and steranes. which could be correlated with both terrigenous and autochthonous sources. They were geologically mature and showed no significant changes due to the thermal stress. The second class was found in the altered samples, which contained only polynuclear aromatic hydrocarbons with low alkyl substitution and sulfur and oxygen heterocyclic aromatic compounds. These compounds were derived from pyrolytic reactions during the thermal event. Kerogen was isolated from all of these samples, but only traces of humic substances were present. The H/C, N/C, d13C, d34S and dD all exhibit the expected effects of thermal stress. The kerogen becomes more aromatized and richer in 13C, 34S and D in the proximity of and between the sills. Maturation trends were also measured by the vitrinite reflectance and electron spin resonance, where the thermal stress could be correlated with an elevated country rock temperature and an increased degree of aromaticity. The effects of in situ thermal stress on the organic-rich shales resulted in the generation and expulsion of petroliferous material from the vicinity of the sills.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fifteen sediment samples were studied from five drill sites recovered by the Glomar Challenger on Legs I and IV in the Gulf of Mexico and western Atlantic. This study concentrated on compounds derived from biogenic precursors, namely: (1) hydrocarbons, (2) fatty acids, (3) pigments and (4) amino acids. Carbon isotope (dC13) data [values <(-26)?, relative to PDB], long-chain n-alkyl hydrocarbons (>>C27) with odd carbon numbered molecules dominating even carbon numbered species, and presence of perylene proved useful as possible indicators for terrigenous contributions to the organic matter in some samples. Apparently land-derived organic matter can be transported for distances over 1000 km into the ocean and their source still recognized. The study was primarily designed to investigate: (i) the sources of the organic matter present in the sediment, (ii) their stability with time of accumulation and (iii) the conditions necessary for in situ formation of new compounds.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

During IODP Expedition 310 (Tahiti Sea Level), drowned Pleistocene-Holocene barrier-reef terraces were drilled on the slope of the volcanic island. The deglacial reef succession typically consists of a coral framework encrusted by coralline algae and later by microbialites; the latter make up < 80% of the rock volume. Lipid biomarkers were analyzed in order to identify organisms involved in reef-microbialite formation at Tahiti, as the genesis of deglacial microbialites and the conditions favoring their formation are not fully understood. Sterols plus saturated and monounsaturated short-chain fatty acids predominantly derived from both marine primary producers (algae) and bacteria comprise 44 wt% of all lipids on average, whereas long-chain fatty acids and long-chain alcohols derived from higher land plants represent an average of only 24 wt%. Bacterially derived mono-O-alkyl glycerol ethers (MAGEs) and branched fatty acids (10-Me-C16:0; iso- and anteiso-C15:0 and -C17:0) are exceptionally abundant in the microbial carbonates (average, 19 wt%) and represent biomarkers of intermediate-to-high specificity for sulfate-reducing bacteria. Both are relatively enriched in 13C compared to eukaryotic lipids. No lipid biomarkers indicative of cyanobacteria were preserved in the microbialites. The abundances of Al, Si, Fe, Mn, Ba, pyroxene, plagioclase, and magnetite reflect strong terrigenous influx with Tahitian basalt as the major source. Chemical weathering of the basalt most likely elevated nutrient levels in the reefs and this fertilization led to an increase in primary production and organic matter formation, boosting heterotrophic sulfate reduction. Based on the observed biomarker patterns, sulfate-reducing bacteria were apparently involved in the formation of microbialites in the coral reefs off Tahiti during the last deglaciation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Arctic soils contain a large fraction of Earth's stored carbon. Temperature increases in the Arctic may enhance decomposition of this stored carbon, shifting the role of Arctic soils from a net sink to a new source of atmospheric CO2. Predicting the impact of Arctic warming on soil carbon reserves requires knowledge of the composition of the stored organic matter. Here, we employ solid state 13C nuclear magnetic resonance (NMR) spectroscopy and Fourier transform infrared-photoacoustic spectroscopy (FTIR-PAS) to investigate the chemical composition of soil organic matter collected from drained thaw-lake basins ranging in age from 0 to 5500 years before present (y BP). The 13C NMR and FTIR-PAS data were largely congruent. Surface horizons contain relatively large amounts of O-alkyl carbon, suggesting that the soil organic matter is rich in labile constituents. Soil organic matter decreases with depth with the relative amounts of O-alkyl carbon decreasing and aromatic carbon increasing. These data indicate that lower horizons are in a more advanced stage of decomposition than upper horizons. Nonetheless, a substantial fraction of carbon in lower horizons, even for ancient thaw-lake basins (2000-5500 y BP), is present as O-alkyl carbon reflecting the preservation of intrinsically labile organic matter constituents. Climate change-induced increases in the depth of the soil active layer are expected to accelerate the depletion of this carbon.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Total organic carbon (TOC) and calcium carbonate (CaCO3) concentrations were determined for 304 samples, and biomarkers were analyzed for 101 samples from Core 167-1016C-1H. TOC varies between 1% and 2%, and CaCO3 is typically 1%-4%, with peaks reaching 14%. Paleotemperature estimated from Uk'37 varies from 8.5° to 17.5°C. The Uk'37 variation implies that Core 167-1016C-1H covers oxygen isotope Stages 1-6. Peaks of diatom-derived C25:1 HBI alkene concentrations occur during warming intervals, suggesting intensified upwelling during deglaciation. The concentrations of haptophyte-derived alkenones and diatom-derived C25:1 HBI alkene vary out of phase, which presumably resulted from the changes in the mode of nutrient supply to surface mixed layer. Maximal CaCO3 contents (>10%) were observed in both warming and cooling intervals. The peak in cooling interval relates to an alkenone maximum, whereas the peaks in warming intervals do not. This implies that carbonate production is not the only factor controlling carbonate compensation depth at this site, and it suggests considering the changes in North Pacific deep-water chemistry. Petroleum-type compounds are present in Site 1016 sediments. Their concentrations are maximized in the warming intervals that correspond to the timing of destruction of a huge tar mound off Point Conception. The tarry material was presumably transported by the Arguello Fan system to Site 1016.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We found high levels of contaminants, in particular organochlorines, in eggs of the ivory gull Pagophila eburnea, a high Arctic seabird species threatened by climate change and contaminants. An 80% decline in the ivory gull breeding population in the Canadian Arctic the last two decades has been documented. Because of the dependence of the ivory gull on sea ice and its high trophic position, suggested environmental threats are climate change and contaminants. The present study investigated contaminant levels (organochlorines, brominated flame retardants, perfluorinated alkyl substances, and mercury) in ivory gull eggs from four colonies in the Norwegian Svalbard) and Russian Arctic (Franz Josef Land and Severnaya Zemlya). The contaminant levels presented here are among the highest reported in Arctic seabird species, and we identify this as an important stressor in a species already at risk due to environmental change.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Results and discussion cover pigment analyses of 36 sediment samples recovered by Deep Sea Drilling Project Leg 64, and six samples from the Leg 64 site-survey cruise in the Guaymas Basin (Scripps Institution of Oceanography, Leg 3). Pigments investigated were tetrapyrroles, tetraterpenoids, and the PAH compound perylene. Traces of mixed nickel and copper ETIO-porphyrins were ubiquitous in all sediment samples, except for the very surface (i.e., <2 m sub-bottom), and their presence is taken as an indication of minor influxes of previously oxidized allochthonous (terrestrial) organic matter. Phorbides and chlorins isolated from Site 479 sediment samples (i.e., the oxygen-minimum locale, northeast of the Guaymas Basin) well represent the reductive diagenesis ("Treibs Scheme"; see Baker and Palmer, 1978; Treibs, 1936) of chlorophyll derivatives. Three forms of pheophytin-a, plus a variety of phorbides, were found to give rise to freebase porphyrins, nickel phylloerythrin, and nickel porphyrins, with increasing depth of burial (increasing temperature). Sediments from Sites 481, 10G, and 18G yielded chlorophyll derivatives characteristic of early oxidative alterations. Included among these pigments are allomerized pheophytin-a, purpurin-18, and chlorin-p6. The high thermal gradient imposed upon the late Quaternary sediments of Site 477 greatly accelerated chlorophyll diagenesis in the adjacent overlying sediments, that is, the production of large quantities of free-base desoxophylloerythroetioporphyrin (DPEP) occurred in a section (477-7-5) presently only 49.8 meters sub-bottom. Present depth and age of these sediments are such that only chlorins and phorbides would be expected. Carotenoid (i.e., tetraterpenoids) concentrations were found to decrease rapidly with increasing sub-bottom depth. Less deeply buried sediments (e.g., 0-30 m) yielded mixtures of carotenes and oxygen-substituted carotenoids. Oxygencontaining (oxy-, oxo-, epoxy-) carotenoids were found to be lost preferentially with increased depth of burial. Early carotenoid diagenesis is suggested as involving interacting reductions and dehydrations whereby dehydro-, didehydro-, and retro-carotenes are generated. Destruction of carotenoids as pigments may involve oxidative cleavage of the isoprenoid chain through epoxy intermediates, akin to changes in the senescent cells of plants. Perylene was found to be a common component of the extractable organic matter from all sediments investigated. The generation of alkyl perylenes was found to parallel increases in the existing thermal regime at all sites. Igneous sills and sill complexes within the sediment profile of Site 481 altered (i.e., scrambled) the otherwise straightforward thermally induced alkylation of perylene. The degree of perylene alkylation is proposed as an indicator of geothermal stress for non-contemporaneous marine sediments.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Glycerol ether lipids have been detected in the bitumen of DSDP sediments from Sites 467, 440B and 380 and from the Green River Shale. The alkyl side groups of these ethers were determined by conversion into deuteroalkanes. The presence of glycerol ethers produced by methanogenic bacteria was indicated in the DSDP bitumens by the formation of monodeuterated phytane and dideuterated biphytane. Other ethers were found with novel non-isoprenoidal side groups which may belong to sulfate-reducing or other, probably anaerobic, bacteria. Kerogen-bound alkoxy groups were determined using hydrogen iodide cleavage of the ether link followed by conversion of the iodoalkanes into corresponding deuteroalkanes. For this reaction, the kerogen was not isolated from the rock matrix. The structures so produced were found to include alkyl groups which have known bacterial precursors as well as others that are presently unknown in organisms. The Green River ether biomarker profile is interpreted as possibly indicative of bacterial diagenesis exclusive of biomethanogenesis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Sediments of upwelling regions off Namibia, Peru, and Chile contain dense populations of large nitrate-storing sulfide-oxidizing bacteria, Thiomargarita, Beggiatoa, and Thioploca. Increased contents of monounsaturated C16 and C18 fatty acids have been found at all stations studied, especially when a high density of sulfide oxidizers in the sediments was observed. The distribution of lipid biomarkers attributed to sulfate reducers (10MeC16:0 fatty acid, ai-C15:0 fatty acid, and mono-O-alkyl glycerol ethers) compared to the distribution of sulfide oxidizers indicate a close association between these bacteria. As a consequence, the distributions of sulfate reducers in sediments of Namibia, Peru, and Chile are closely related to differences in the motility of the various sulfide oxidizers at the three study sites. Depth profiles of mono-O-alkyl glycerol ethers have been found to correlate best with the occurrence of large sulfide-oxidizing bacteria. This suggests a particularly close link between mono-O-alkyl glycerol ether-synthesizing sulfate reducers and sulfide oxidizers. The interaction between sulfide-oxidizing bacteria and sulfate-reducing bacteria reveals intense sulfur cycling and degradation of organic matter in different sediment depths.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Ocean Drilling Program (ODP) Site 1151 (Sacks, Suyehiro, Acton, et al., 2000, doi:10.2973/odp.proc.ir.186.2000) is located in an area where the surface water mass is influenced by both the Kuroshio and Oyashio Currents. The site also receives a relatively high flux of detrital materials from riverine input from Honsyu Island and eolian input from Central and East Asia. We analyzed alkenones and alkenoates in the sediments to reconstruct alkenone unsaturation index (Uk'37)-based sea-surface temperature (SST), total organic carbon, and total nitrogen to estimate the terrigenous contribution by the C/N ratio during the last glacial-interglacial cycle. The major elements were also analyzed to examine the variation in terrigenous composition.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Twenty-four sediment samples from DSDP Holes 605 (Leg 93) and 613 (Leg 95) on the New Jersey continental rise were analyzed by pyrolysis-gas chromatography. Twelve of these samples were also analyzed by pyrolysis-gas chromatography/mass spectrometry. The degree of preservation of sediment organic matter, as determined by these techniques, helped to distinguish slumped sediments from sediments that have not moved from their original place of deposition. Total levels of pyrolyzable organic material, as determined from pyrolysis-gas chromatography, were low in sediments that were not slumped, indicating that the organic material is highly degraded. Nitrogen- and oxygen-containing compounds were the primary compounds detected by gas chromatography/mass spectrometry (GCMS) analysis of the pyrolyzate of non-slumped sediments. Smaller amounts of aromatic compounds and branched alkanes were also present in some of these samples. In contrast, slumped sediments showed larger amounts of pyrolyzable organic matter, as determined from pyrolysis-gas chromatography, and better preservation of alkyl chains in the sediment organic matter, as suggested by the presence of n-alkanes in GCMS analysis of the pyrolyzate. Better preservation of the organic matter in slumped sediments can be attributed to more moderate bioturbation by bottom-dwelling organisms at the original deposition site.