71 resultados para AK26A-2589
Resumo:
Sortable silt mean grain sizes together with oxygen and carbon isotopic data produced on the benthic foraminiferal species Fontbotia wuellerstorfi are used to construct high-resolution records of near-bottom flow vigour and deep water ventilation at a core site MD02-2589 located at 2660 m water depth on the southern Agulhas Plateau. The results suggest that during glacial periods (marine oxygen isotope stages 2 and 6, MIS 2 and MIS 6, respectively), there was a persistent contribution of a well-ventilated water mass within the Atlantic to Indian oceanic gateway with a d13C signature similar to present-day Northern Component Water (NCW), e.g., North Atlantic Deep Water (NADW). The records of chemical ventilation and near-bottom flow vigor reflect changes in the advection of northern source waters and meridional variability in the location of the Antarctic Circumpolar Current and its associated fronts. We suggest that during Termination II (TII), changes in chemical ventilation are largely decoupled from near-bottom physical flow speeds. A mid-TII climate optimum is associated with a low-flow speed plateau concurrent with a period of increased ventilation shown in the benthic d13C of other Southern Ocean records but not in our benthic d13C of MD02-2589. The climate optimum is followed by a period of southern cooling around 128 ka coincident with a stronger influence of NCW to interglacial levels at around 124 ka. All proxy records show a near synchronous and rapid shift during the transition from MIS 5a-4 (73 ka). This large event is attributed to a rapid decrease in NADW influence and replacement over the Agulhas Plateau by southern source waters.
Resumo:
Vertical profiles of light scattering at a right angle and turbidity profiles in seawater indicating suspended matter concentration in the near-bottom nepheloid layer (NNL) were measured simultaneously with temperature, salinity, and density profiles at the continental slope off the northwestern Africa. About 100 stations 5' apart in latitude and longitude were carried out over an ocean area of 6100 sq. km. Special features of the NNL variability in the area were analyzed. It was found that some structural parameters of the NNL (maximum transparency depth, that is the upper boundary of NNL; NNL thickness; maximum and total turbidity) correlate with ocean depth. On the average, thickness of the NNL in the area is 20-40% of the ocean depth. At most stations the NNL is fairly strong. In the shelf region NNL turbidity was influenced by the intensive near-shore upwelling. Formation of ''high-energy near-bottom layers'' in the shelf region resulted from passing of a mesoscale cyclonic eddy that caused redistribution of measured quantities within the entire water column.
Resumo:
An Eocene-Oligocene oxygen and carbon isotope history based on planktonic and benthic foraminifers from Deep Sea Drilling Project Leg 71 cores has been constructed for the Maurice Ewing Bank of the eastern Falkland Plateau, Southwest Atlantic Ocean. Specifically, the cores cover portions of the middle Eocene, upper Eocene, and lower Oligocene. Surface water isotopic temperatures postulated for the middle Eocene at Site 512 fluctuated within about four degrees but generally averaged about 9°C. Bottom isotopic temperatures at Site 512 (water depth, 1846 m) were generally a degree lower than surface water temperatures. Surface water isotopic temperatures at Site 511 initially averaged about 11°C during the late Eocene, but dropped to an average of 7°C in the early Oligocene. Bottom isotopic temperatures at Site 511 (water depth, 2589 m) generally record temperatures between 12.5°C and 8°C, similar to the range in the surface water isotopic temperatures. During the early Oligocene, bottom isotopic temperatures dropped sharply and averaged about 2°C (very close to present-day values). Surface water temperature values also decreased to an average of about 7°C, therefore leading to a significant divergence between surface and bottom water isotopic temperatures during the early Oligocene. Comparisons among Southern Ocean DSDP Sites 511, 512, and 277, and between these and other DSDP sites from central and northern latitudes (Sites 44, 167, 171, 292, 357, 398, 119, and 401) show that much of the Eocene was characterized by relatively warm temperatures until sometime in either the middle Eocene, late Eocene, or early Oligocene. At each site, conspicuous 18O enrichments occur in both the benthic and planktonic foraminifers over a relatively short period of time. Although a general trend toward a climatic deterioration is evident, the density of data points among the various studies is still too sparse to determine either synchrony or time-transgression between the major isotopic events. A close correlation could be made between the Site 511 oxygen isotope temperature curve and paleoclimatic trends derived independently from radiolarian studies. The sharp temperature drop and the divergence between bottom and surface water temperatures during the early Oligocene apparently reflect a major expansion of the antarctic water mass. The migration of the boundary between the subantarctic and antarctic water masses over the site at this time would account in part for the sharp temperature changes. Sharp changes of this nature would not necessarily be noted in other geographic areas, particularly those to the north which have different oceanographic regimes.