256 resultados para ADI 2.316
Resumo:
Laboratory measurements of ultrasonic velocity (VP, VS) and attenuation (QP**-1, QS**-1) in deep-sea carbonate sequences at DSDP Sites 288, 289 and 316 in the equatorial Pacific were made in conjunction with studies of sediment density, porosity and pore geometry in order to investigate the role of diagenesis in the development of physical properties. Bulk porosity decrease appears to be related more significantly to depth of burial than to age of strata. Both depth of burial and age, however, are important factors controlling the modal pore diameter. In deep-burial diagenesis the modification of pore geometry is influenced by the presence of silica during diagenesis. In carbonate sequences at the three DSDP sites studied, shear wave attenuation anisotropy (QSHH**-1/QSHV**-1) correlates with the shear wave velocity anisotropy. Pore orientation, resulting from overburden pressure and other deep-burial diagenetic processes, is an important factor controlling the increase of VP anisotropy with age and depth of burial. On the basis of observed minor changes in anisotropy values with increasing pressure for some samples, other contributions to VP anisotropy such as grain orientation and bedding lamination cannot be ruled out.
Resumo:
At subduction zones, the permeability of major fault zones influences pore pressure generation, controls fluid flow pathways and rates, and affects fault slip behavior and mechanical strength by mediating effective normal stress. Therefore, there is a need for detailed and systematic permeability measurements of natural materials from fault systems, particularly measurements that allow direct comparison between the permeability of sheared and unsheared samples from the same host rock or sediment. We conducted laboratory experiments to compare the permeability of sheared and uniaxially consolidated (unsheared) marine sediments sampled during IODP Expedition 316 and ODP Leg 190 to the Nankai Trough offshore Japan. These samples were retrieved from: (1) The décollement zone and incoming trench fill offshore Shikoku Island (the Muroto transect); (2) Slope sediments sampled offshore SW Honshu (the Kumano transect) ~ 25 km landward of the trench, including material overriden by a major out-of-sequence thrust fault, termed the "megasplay"; and (3) A region of diffuse thrust faulting near the toe of the accretionary prism along the Kumano transect. Our results show that shearing reduces fault-normal permeability by up to 1 order of magnitude, and this reduction is largest for shallow (< 500 mbsf) samples. Shearing-induced permeability reduction is smaller in samples from greater depth, where pre-existing fabric from compaction and lithification may be better developed. Our results indicate that localized shearing in fault zones should result in heterogeneous permeability in the uppermost few kilometers in accretionary prisms, which favors both the trapping of fluids beneath and within major faults, and the channeling of flow parallel to fault structure. These low permeabilities promote the development of elevated pore fluid pressures during accretion and underthrusting, and will also facilitate dynamic hydrologic processes within shear zones including dilatancy hardening and thermal pressurization.
Resumo:
A new microtiter-plate dilution method was applied during the expedition ANTARKTIS-XI/2 with RV Polarstern to determine the distribution of copiotrophic and oligotrophic bacteria in the water columns at polar fronts. Twofold serial dilutions were performed with an eight-channel Electrapette in 96-wells plates by mixing 150 µl of seawater with 150 µl of copiotrophic or olitrophic Trypticase-Broth, three times per well. After incubation of about 6 month at 2 °C, turbidities were measured with an eight-channel photometer at 405 nm and combinations of positive test results for three consecutive dilutions chosen and compared with a Most Probable Number table, calculated for 8 replicates and twofold serial dilutions. Densities of 12 to 661 cells/ml for copiotrophs, and 1 to 39 cells/ml for oligotrophs were found. Colony Forming Units on copiotrophic Trypticase-Agar were between 6 and 847 cells/ml, which is in the same range as determined with the MPN method.