65 resultados para A. cf. dissonata
Resumo:
Clusters of sponge spicules found in Quaternary deep-water sediments at Sites 685 and 688 off Peru represent single individuals of small sponges or fragments of larger sponges. The spicule assemblages constituting these clusters probably represent a few demosponge species of the subclass Tetractinomorpha and order Astrophorida, because triaenes and microscleric euasters, as well as abundant monaxons, are present. As proved by incorporated Neogene diatoms, these spicule clusters are allochthonous. The sponge individuals probably inhabited deeper neritic environments during late Neogene time.
Resumo:
In the framework of the Italian project CO2 Monitor, two culture experiments were carried out in vertical closed photobioreactors with Pleurochrysis cf. pseudoroscoffensis Gayral & Fresnel 1983, a coccolithophore isolated from the Gulf of Trieste (North Adriatic Sea). The aim of this study was to investigate the effects induced by pH variations due to CO2 emissions on its growth and morphology. Two experiments were carried out with two different CO2 concentrations (1 and 2%). Growth and cell size in light microscopy, morphology and coccolith size in scanning electron microscopy, particulate nitrogen (PN) and particulate inorganic and organic carbon (PIC and POC) content of the coccolithophore were investigated during the light and dark phases. Dissolved inorganic nutrient (nitrate and phosphate) concentrations and pH of the medium and the presence of heterotrophic prokaryotes (HP) were monitored as well.
Resumo:
Upper abyssal to lower bathyal benthic foraminifers from ODP Sites 689 (present water depth 2080 m) and 690 (present water depth 2941 m) on Maud Rise (eastern Weddell Sea, Antarctica) are reliable indicators of Maestrichtian through Neogene changes in the deep-water characteristics at high southern latitudes. Benthic foraminiferal faunas were divided into eight assemblages, with periods of faunal change at the early/late Maestrichtian boundary (69 Ma), at the early/late Paleocene boundary (62 Ma), in the latest Paleocene (57.5 Ma), in the middle early Eocene to late early Eocene (55-52 Ma), in the middle middle Eocene (46 Ma), in the late Eocene (38.5 Ma), and in the middle-late Miocene (14.9-11.5 Ma). These periods of faunal change may have occurred worldwide at the same time, although specific first and last appearances of deep-sea benthic foraminifers are commonly diachronous. There were minor faunal changes at the Cretaceous/Tertiary boundary (less than 14?7o of the species had last appearances at Site 689, less than 9% at Site 690). The most abrupt benthic foraminiferal faunal event occurred in the latest Paleocene, when the diversity dropped by 50% (more than 35% of species had last appearances) over a period of less than 25,000 years; after the extinction the diversity remained low for about 350,000 years. The highest diversities of the post-Paleocene occurred during the middle Eocene; from that time on the diversity decreased steadily at both sites. Data on faunal composition (percentage of infaunal versus epifaunal species) suggest that the waters bathing Maud Rise were well ventilated during the Maestrichtian through early Paleocene as well as during the latest Eocene through Recent. The waters appeared to be less well ventilated during the late Paleocene as well as the late middle through early late Eocene, with the least degree of ventilation during the latest Paleocene through early Eocene. The globally recognized extinction of deep-sea benthic foraminifers in the latest Paleocene may have been caused by a change in formational processes of the deep to intermediate waters of the oceans: from formation of deep waters by sinking at high latitudes to formation of deep to intermediate water of the oceans by evaporation at low latitudes. Benthic foraminiferal data (supported by carbon and oxygen isotopic data) suggest that there was a short period of intense formation of warm, salty deep water at the end of the Paleocene (with a duration of about 0.35 m.y.), and that less intense, even shorter episodes might have occurred during the late Paleocene and early Eocene. The faunal record from the Maud Rise sites agrees with published faunal and isotopic records, suggesting cooling of deep to intermediate waters in the middle through late Eocene.
Resumo:
In the neighbourhood of Oobloyah Bay various phenomena ean be eneountered whieh point to a ularge-seale uplift of shorelines, i.e. to an emergence of 200 m. Delta terraces, deltaic fan terraces and glacio-marine sands are regarded by the author as being the most reliable evidence of this. The marine limit documented by glacio-marine sand is to be found at ~170 m a.s.l. Hints of ancient shorelines located at a higher level exist only in the shape of badly preserved raised beaches. They were classified as less reliable records of past sea-levels, due to the lack of marine fossils and/or drift wood, and furthermore because those forms had been strongly influenced by periglacial processes. Deltaic deposits are of more importance in this context. The glacio-marine deltaic sands of several terrace levels contain terrestrial plant remnants which delivered C14dates. Using these dates und the relative elevations of terraces the emergenee of the area investigated could be recorded. This occured in a series of phases (and steps) which were summarized into two periods: an early period of emergenee which took place from at least 25 300 years B.P. to later than 17 340 years B.P. and a later one from at least 12 870 years B.P. up to the present day. The emergence seems to represent a discontinuous but regular sequence of relative sea level movements without intermittent submergence. Since the deltaic fans of the early emergence period were accumulated by sediments through glacio-fluvial channels of an adjacent glacier body the appropriate location of this glacial stage for one of the glaciers delivering meltwater (Nukapingwa Glacier) could be reconstructed. This stage of the glacier appears to belong to a retreating phase of the Mid-Wisconsin (?). The later period of emergence resulted in six rather glacio-marine delta terrace generations at the mouths of the main rivers with glaciofluvial regimen debouching into the Oobloyah Bay. A connection of this emergence with the glacial history of the field area is discussed. If one may rely on the age determinations of land derived plant fossils and their application for the climatic history of the area investigated, it must be concluded that the Heidelberg Valley, to a large extent, was alreaely deglaciated 25 000 years ago. The existence of a "Cockburn"-Phase in the sense of a major readvanee in Late Wisconsin times appears to be doubtful, or has been developed rather weakly.