272 resultados para 96-620


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Interstitial water studies were done at 9 of the 11 sites visited in the Mississippi Fan and Orca and Pigmy Basins during DSDP Leg 96. High concentrations of sulfate were observed at Mississippi Fan Sites 616, 617, 620, and 623. The maximum sulfate value of 38.8 mM, recorded at Site 617, is the highest ever found in DSDP sediments. Hypersaline interstitial water was observed at Site 618 in Orca Basin. Concentration ratios of salinity to chlorinity and to sodium in interstitial waters are similar to those of Orca Basin bottom water, suggesting that the chemistry of interstitial water is affected by the dissolution of buried salt.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A preliminary palynological survey of 118 samples from the Mississippi Fan (Sites 615, 616, and 620) and from 2 intraslope basins (Sites 619 and 618) shows pollen in all samples. Reworked pollen is generally abundant, forming over 50% of the sum of pollen and reworked pollen. Concentration of nonreworked pollen is usually low (on the order of tens to hundreds of pollen grains per cubic centimeter wet sediment). Conifers, primarily Pinus, Picea, and Tsuga, dominate Pleistocene marine pollen spectra; significant percentages of Quercus are present in Holocene sediments and in sediments deposited during oxygen-isotope Stage 5.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Sediments from Deep Sea Drilling Project Sites 615, 617, 618, 619, and 620-623 were subjected to pyrolysis. The sediments are immature with respect to petroleum generation as determined by production index values of less than 0.1 and Tmax values of 460-480°C. The amount of pyrolyzable organic matter was moderately low as compared to typical petroleum source rocks. The immature organic matter present does not appear to contain a significant proportion of woody material as shown by the low gas-generating potential. Typical overbank sediments from Sites 617 and 620 generally show higher P2 values (500-800 µg hydrocarbon per g dry weight sediment) than typical channel-fill sediments from Sites 621 and 622 (P2 = 450-560 µg/g). Tmax for both types of sediment remained very constant (462-468 °C) with a slight elevation (+ 15°C) occurring in samples containing lignite. The highest P2 values occurred in sections described as turbidites. Very low P2 values (about 50 µg/g) occurred in sands. P2 values for shallower sections of basin Sites 618 and 619 tended to be higher (900-1000 µg/g) and decreased in deeper, more terrigenous sections of Site 619. Preliminary experiments indicate that microbiological degradation of sediment organic matter causes a decrease in P2. Pyrolyzable organic matter from lower fan Site 623 appears to increase with depth in two different sediment sequences (40-85 and 95-125 m sub-bottom). Organic matter type, as shown by pyrolysis capillary gas chromatography (GC) patterns, was generally the same throughout the well, with much more scatter occurring in the deepest sections (130-155 m sub-bottom). One major and two minor organic matter types could be recognized in both fan and basin sites drilled on Leg 96.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Sediment samples collected at DSDP Leg 96 Mississippi Fan Sites 615, 616, 620, 621, and 623, Orca Basin Site 618, and Pigmy Basin Site 619 were analyzed for 22 major, minor, and trace elements. This study was undertaken to document the downhole variability in inorganic geochemistry between sites. The mineralogy of the clays, including those from Sites 614, 617, and 622 on the fan, was determined by X-ray diffraction to define the principal clay minerals present at the sites, examine any downhole trends in clay mineralogy, and aid in the interpretation of the geochemical signature of the sediments. Clay mineral composition at all the sites is smectite:illite:chlorite:kaolinite in the approximate percentage ratio 50:20:20:10. Geochemical results indicate only slight variation between and within the sites, with the exception of a discrete unit of carbonates that occurs near the bottom of Site 615. Variation in the major, minor, and trace element composition can be explained by a change in the relative abundance of quartz, clay minerals, and carbonates.