254 resultados para 96-619


Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The concentration and carbon isotopic composition (d13C) of sedimentary organic carbon (C_org), N/C ratios, and terrigenous and marine d13C_org endmembers form a basis from which to address problems of Late Quaternary glacial-interglacial climatic variability in a 208.7 m hydraulic piston core (DSDP 619) from the Pigmy Basin in the northern Gulf of Mexico. While interpretations of sedimentary d13C_org time series records are often not unique, paired analyses of d13C_org and N/C are consistent with the hypothesis that the C_org in the Pigmy Basin is a climatically determined mixture of C3-photosynthetic terrigenous and marine organic matter, confirming the earlier d13C_org model of Sackett (1964). A high resolution (~1.4-2.9 Ka/sample) d13C_org record shows that sedimentary organic carbon in interglacial oxygen isotope (sub)stages 1 and 5a-b are enriched in 13C (average +/-1 sigma values are -24.2+/-1.2? and -22.9+/-0.7? relative to PDB, respectively) while glacial isotope stage values 2 are relatively depleted (-25.6+/-0.5?). Concentrations of terrigenous and marine sedimentary organic carbon are calculated for the first time using d13C_org and C_org measurements, and empirically determined terrigenous and marine d13C_org endmembers. The net accumulation rate of terrigenous organic carbon is 4.3+/-2.6 times higher in isotope stages 2-4 than in (sub)stages 1 and 5a-b, recording higher erosion rates of terrigenous organic material in glacial times. The concentration and net accumulation rates of marine and terrigenous C_org suggest that the nutrient-bearing plume of the Mississippi River may have advanced and retreated across the Pigmy Basin as sea level fell and rose in response to glacial-interglacial sea level change.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Radiolabeled products were formed from labeled substrates during anaerobic incubation of sediments from Sites 618, 619, and 622. One set of experiments formed 14CO2, 14CH4, and 35SH2 from 2-14C-acetate and 35S-sulfate; a second set formed 14CH4 from 14C-methylamine or 14C-trimethylamine. Levels of 14CO2 and 35S2 formed were two to three orders of magnitude greater than 14CH4. Production of 14CH4 by Deep Sea Drilling Project (DSDP) sediments was four to five orders of magnitude less than that formed by anoxic San Francisco Bay sediment. However, incubation of Site 622 sediment slurries under H2 demonstrated production of small quantities of CH4. These results indicate that DSDP sediments recovered from 4 to 167 m sub-bottom (age 85,000-110,000 yr.) harbor potential microbial activity which includes sulfate reducers and methanogens. Analysis of pore waters from these DSDP sites indicates that bacterial substrates (acetate, methylated amines) were present.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Site 619, located in the Pigmy Basin off the coast of Louisiana, penetrated the late Quaternary Ericson Zones X, Y, and Z. The penetrated section can be divided into four intervals. The lower interval (below 157 m sub-bottom) comprises 51 m of displaced sediments which probably originated from the Louisiana continental shelf. The upper three intervals (above 157 m) are dominated by pelagic/hemipelagic sedimentation associated with a closed basin. These are divided on the basis of planktonic foraminifers into Zones X, Y, and Z. These warm-cool water intervals are identified mainly by using the Globorotalia menardii complex (warm) and G. inflata (cool). The intervals correlate with published curves taken from piston core samples in the western Gulf of Mexico.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Preliminary data on dissolved organic carbon (DOC) and dissolved sugars in interstitial water samples collected at Sites 618, 619, and 623 of Deep Sea Drilling Project Leg 96 are presented. At Site 618 in Orca Basin, the DOC content of the interstitial water peaks in the hypersaline sulfate reduction zone. The sugar content reaches a maximum and the DOC content begins to decrease at the depth of methane gas generation. Below that depth, the sugar and DOC contents are about constant. At Site 619 in Pigmy Basin, the DOC content increases slightly with depth in the sulfate reduction and the methane fermentation zones. The sugar content is lower in the sulfate reduction zone than in the methane fermentation zone; sugar concentration increases and fluctuates with methane gas percentages within the methane fermentation zone. At Site 623 in the lower fan region of the Mississippi Fan, there is no sulfate reduction zone. The DOC and sugar contents of the interstitial water are almost constant with depth.