605 resultados para 94-606
Resumo:
The primary objective of DSDP Leg 94 was to obtain continuous paleoclimatic records along a roughly north-south transect in the North Atlantic. The magnetostratigraphy of 21 holes at 6 sites cored with the hydraulic piston corer and extended-core-barrel corer is presented here and establishes an independent chronology for these sediments. Nearly complete records were obtained for the last 2.5 m.y.; in addition, deeper drilling at three sites to satisfy tectonic and paleoceanographic objectives produced older sections suitable for magnetostratigraphic study, allowing first-order correlations of the polarity sequences with calcareous and siliceous micro fossil events. The sections with high sediment accumulation rates yielded very detailed records of polarity history and allowed three short normal-polarity zones within the Matuyama Chronozone to be detected, in addition to the Jaramillo and Olduvai subchronozones. A short reversed-polarity zone also occurs, within the upper intervals of the Gauss Chronozone. These short zones are present in multiple holes, ruling out the possibility that they might be of local origin. Correlation of these short zones with radiometrically dated polarity zones in igneous rocks strongly supports the interpretation of these polarity zones as records of true geomagnetic polarity chrons.
Resumo:
The extent to which the spatial distribution of marine planktonic microbes is controlled by local environmental selection or dispersal is poorly understood. Our ability to separate the effects of these two biogeographic controls is limited by the enormous environmental variability both in space and through time. To circumvent this limitation, we analyzed fossil diatom assemblages over the past ~1.5 million years from the world oceans and show that these eukaryotic microbes are not limited by dispersal. The lack of dispersal limitation in marine diatoms suggests that the biodiversity at the microbial level fundamentally differs from that of macroscopic animals and plants for which geographic isolation is a common component of speciation.
Resumo:
We demonstrate size fluctuations of the calcareous nannofossil genus Reticulofenestra in Upper Pliocene sediments from the North Atlantic Ocean and clarify a characteristic evolutionary trend of this genus. Four bioevents, which are based on abrupt decreases in maximum size and on changes of morphologic features of Reticulofenestra specimens, are detected in the sediments. They are the disappearance of R. minutula var. A, the termination of Acme Zone II of R. minutula var. C, the disappearance of R. minutula var. B, and the termination of Acme Zone I of R. minutula var. C, in ascending order. These are nearly synchronous and traceable events.
Resumo:
Leg 94 of the Deep Sea Drilling Project has provided a unique set of paleomagnetically dated cores, taken along a N-S transect in the North Atlantic. High deposition rates in the sediments, combined with the palaeomagnetic ages, have enabled existing planktonic foraminiferal zonations to be tested and a new zonation for the mid- to high latitudes to be erected. The PL zonation of Berggren (1973, 1977) is shown to be adequate as far north as 41°N, although both the LAD's of Globigerina nepenthes and Globorotalia margaritae occur earlier than in tropical regions. North of 41°N these two species have very diachronous LAD's, even though they are common during their range in the northern sites. The new zonation for the mid to high latitude North Atlantic is based on the FAD of G. margaritae, FAD of G. puncticulata, LAD of G. cf. crassula, LAD of N. atlantica, FAD of G. inflata and FAD of sinistrally coiled encrusted N. pachyderma.
Resumo:
After nearly 30 years of growth in geochronologic knowledge, the originally published age models for many older deep sea marine sections have become badly outdated. In this report we present newly revised age models for Neogene sediments from 94 DSDP holes. Biostratigraphic data for planktonic foraminifers, calcareous nannofossils, diatoms and radiolarians, paleomagnetic and other stratigraphic data were compiled from the original Initial Reports volumes of DSDP. The Berggren et al. (1985 doi:10.1130/0016-7606(1985)96<1407:CG>2.0.CO;2) scale was used for the age of magnetic reversals, and a variety of recent papers were used to establish a standard modern set of calibrations for marine microfossil events to the magnetic reversal scale. New age vs depth plots were made for each hole, and for each a new line of correlation was created. All tabulated stratigraphic data, new age models, and age depth plots are given as appendices to the report.
Resumo:
The Greenland ice sheet is accepted as a key factor controlling the Quaternary glacial scenario. However, the origin and mechanisms of major Arctic glaciation starting at 3.15 Ma and culminating at 2.74 Ma are still controversial. For this phase of intense cooling Ravelo et al. proposed a complex gradual forcing mechanism. In contrast, our new submillennial-scale paleoceanographic records from the Pliocene North Atlantic suggest a far more precise timing and forcing for the initiation of northern hemisphere glaciation (NHG), since it was linked to a 2-3 °C surface water warming during warm stages from 2.95 to 2.82 Ma. These records support previous models, claiming that the final closure of the Panama Isthmus (3.0- ~2.5 Ma induced an increased poleward salt and heat transport. Associated strengthening of North Atlantic Thermohaline Circulation and in turn, an intensified moisture supply to northern high latitudes resulted in the build-up of NHG, finally culminating in the great, irreversible climate crash at marine isotope stage G6 (2.74 Ma). In summary, there was a two-step threshold mechanism that marked the onset of NHG with glacial-to-interglacial cycles quasi-persistent until today.
Resumo:
K-Ar dates were obtained for three pillow basalt samples recovered from Site 608 (Samples 608-58-1, 103-109 cm; 608-59-1, 3-7 cm; 608-59-1, 48-53 cm). Reliable K-Ar dates cannot be routinely obtained for deep-sea igneous rocks, because they may be subject to inaccuracies related to seawater alteration (Seidemann, 1977, doi:10.1130/0016-7606(1977)88<1660:EOSAOK>2.0.CO;2) and/or the presence of excess radiogenic 40Ar (Dalrymple and Moore, 1968, doi:10.1126/science.161.3846.1132; Dymond, 1970, doi:10.1130/0016-7606(1970)81[1229:EAISBP]2.0.CO;2). Thus, the possibility that the samples dated in this study were subject to these sources of inaccuracy must be evaluated.