181 resultados para 860[82].07[Cortázar]


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The need to obtain ocean color essential climate variables (OC-ECVs) using hyperspectral technology has gained increased interest in recent years. Assessing ocean color on a large scale in high latitude environments using satellite remote sensing is constrained by polar environmental conditions. Nevertheless, on a small scale we can assess ocean color using above-water and in-water remote sensing. Unfortunately, above-water remote sensing can only determine apparent optical properties leaving the sea surface and is susceptible to near surface environmental conditions for example sky and sunglint. Consequently, we have to rely on accurate in-water remote sensing as it can provide both synoptic inherent and apparent optical properties of seawater. We use normalized water leaving radiance LWN or the equivalent remote sensing reflectance RRS from 27 stations to compare the differences in above-water and in-water OC-ECVs. Analysis of above-water and in-water RRS spectra provided very good match-ups (R2 > 0.97, MSE<1.8*10**-7) for all stations. The unbiased percent differences (UPD) between above-water and in-water approaches were determined at common OC-ECVs spectral bands (410, 440, 490, 510 and 555) nm and the classic band ratio (490/555) nm. The spectral average UPD ranged (5 - 110) % and band ratio UPD ranged (0 - 12) %, the latter showing that the 5% uncertainty threshold for ocean color radiometric products is attainable. UPD analysis of these stations West of Greenland, Labrador Sea, Denmark Strait and West of Iceland also suggests that the differences observed are likely a result of environmental and instrumental perturbations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The North Atlantic at present is ventilated by overflow of the Denmark Strait, Iceland-Faeroe Ridge, Faeroe Bank Channel, and Wyville-Thompson Ridge. The evolution of Cenozoic abyssal circulation of this region was related to tectonic opening and subsidence of these sills. We used d13C records of the benthic foraminifer Cibicidoides to decipher the timing of tectonically controlled changes in bottom-water circulation in the eastern basins (Biscay and Iberian) of the northern North Atlantic. Records from Site 608 (Kings Trough, northeastern North Atlantic) show that from about 24 to 15 Ma (early to early middle Miocene), d13C values in the Kings Trough area were depleted relative to western North Atlantic values and were more similar to Pacific d13C values. This reflects less ventilation of the Kings Trough region as compared to the well-oxygenated western North Atlantic. Comparison of Oligocene d13C records from Site 119 (Bay of Biscay) with western North Atlantic records suggests that the eastern basin was also relatively isolated prior to 24 Ma. At about 15 Ma, d13C values at Site 608 attained values similar to the western North Atlantic, indicating increased eastern basin ventilation in the middle Miocene. This increased advection into the eastern basin predated a major d18O increase which occurred at about 14.6 Ma. Subsidence estimates of the Greenland-Scotland Ridge indicate that the deepening of the Iceland-Faeroe Ridge was coincident with the marked change in eastern basin deep-water ventilation.