408 resultados para 860[729.1].07[Sarduy]


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Secchi depth is a measure of water transparency. In the Baltic Sea region, Secchi depth maps are used to assess eutrophication and as input for habitat models. Due to their spatial and temporal coverage, satellite data would be the most suitable data source for such maps. But the Baltic Sea's optical properties are so different from the open ocean that globally calibrated standard models suffer from large errors. Regional predictive models that take the Baltic Sea's special optical properties into account are thus needed. This paper tests how accurately generalized linear models (GLMs) and generalized additive models (GAMs) with MODIS/Aqua and auxiliary data as inputs can predict Secchi depth at a regional scale. It uses cross-validation to test the prediction accuracy of hundreds of GAMs and GLMs with up to 5 input variables. A GAM with 3 input variables (chlorophyll a, remote sensing reflectance at 678 nm, and long-term mean salinity) made the most accurate predictions. Tested against field observations not used for model selection and calibration, the best model's mean absolute error (MAE) for daily predictions was 1.07 m (22%), more than 50% lower than for other publicly available Baltic Sea Secchi depth maps. The MAE for predicting monthly averages was 0.86 m (15%). Thus, the proposed model selection process was able to find a regional model with good prediction accuracy. It could be useful to find predictive models for environmental variables other than Secchi depth, using data from other satellite sensors, and for other regions where non-standard remote sensing models are needed for prediction and mapping. Annual and monthly mean Secchi depth maps for 2003-2012 come with this paper as Supplementary materials.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The CaCO3 content in Quaternary deep-sea sediments from Pacific and Atlantic oceans have been suggested to respond differently to glacial/interglacial cycles; CaCO3 contents are highest during glacials in the Pacific but highest during interglacials in the Atlantic Ocean. It is not yet clear as to whether a Pacific or an Atlantic pattern of CaCO3 fluctuations dominates the Indian Ocean. We have analyzed the Ocean Drilling Program (ODP) Site 709A from the western equatorial Indian Ocean for the last 1370 ka to determine the relationships between percentages and fluxes of CaCO3 and Quaternary paleoclimatic changes. We also analyzed the coarse (>25 µm) and fine (<25 µm) fractions of CaCO3 in an attempt at estimating the influence of differences in productivity of foraminifera and calcareous nannofossils in shaping the CaCO3 record. Carbon isotopes and Ba/Al ratios were used as indices of productivity. Percentages and fluxes of CaCO3 in the total sediment and <25 µm fraction do not show any clear relationships to glacial/interglacial cycles derived from d18O of the planktonic foraminifera Globigerinoides ruber. This indicates that CaCO3 fluctuations at this site do not show either a Pacific or an Atlantic pattern of CaCO3 fluctuations. Fluxes of CaCO3 (0.38 to 2.46 g/cm**2/ ka) in total sediment and Ba/Al ratios (0.58 to 3.93 g/cm**2/ka) show six-fold variability through the last 1370 ka, which points out that productivity changes are significant at this site. Fluxes of the fine CaCO3 component demonstrate a 26-fold change (0.02 to 0.52 g/cm**2/ka), whereas the coarse CaCO3 component exhibit eight-fold change (0.13 to 1.07 g/cm**2/ka). This suggests that productivity variations of calcareous nannofossils are greater in comparison with the foraminifera. On the other hand, mean values of coarse CaCO3 fluxes are higher compared to those of fine CaCO3, which reveals that the foraminifera contribute more to the bulk CaCO3 flux than the calcareous nannofossils in the equatorial Indian Ocean.

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Upper Paleocene to lower Eocene sediments drilled at Ocean Drilling Program (ODP) Site 1051 (Blake Nose, off Florida) display well-defined orbital cycles, a detailed magnetic stratigraphy, and a suite of planktonic foraminiferal datums. We derived a cyclostratigraphy by using spectral analysis of high-resolution records of elemental concentrations obtained by an X-ray fluorescence (XRF) Core Scanner. XRF counts of iron serve as a proxy for the relative amount of terrestrial material. Sliding-window spectral analysis, bandpass filtering, and direct counting of precession and obliquity cycles yield minimum durations for magnetic polarity chrons C22 to C26 (~49 to ~61 Ma), calculations of sediment accumulation rates, as well as constraints on the timing of biostratigraphic and climatological events in the vicinity of the Initial Eocene Thermal Maximum (IETM). Durations of polarity chrons as represented in sediments drilled at Site 1051 were estimated using a conservative assignment of 41 k.y. for obliquity cycles and 21 k.y. for precession cycles. Combined polarity chrons C26r and C26n span 3.61 m.y., and chron C25r spans 1.07 m.y. Polarity chron C24r is estimated as 2.877 m.y. The interpretation of polarity chron C24n is ambiguous, but its duration is probably <1.23 m.y. Polarity chron C23r spans 0.53 m.y., chron C23n is 0.74 m.y., and chron C22r is 0.9 m.y. Spectral analysis through this interval indicates that spectral peaks shift through time and are related to changes in sedimentation rate in Site 1051. The sedimentation rates dramatically increased ~200 k.y. after the IETM and remained high for most of chron C24r.

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador: