337 resultados para 85-575


Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Data on the composition of benthic foraminiferal faunas at Deep Sea Drilling Project Site 575 in the eastern equatorial Pacific Ocean were combined with benthic and planktonic carbon- and oxygen-isotope records and CaCO3 data. Changes in the composition of the benthic foraminiferal faunas at Site 575 predated the middle Miocene period of growth of the Antarctic ice cap and cooling of the deep ocean waters by about 2 m.y., and thus were not caused by this cooling (as has been proposed). The benthic faunal changes may have been caused by increased variability in corrosivity of the bottom waters, possibly resulting from enhanced productivity in the surface waters.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Oxygen isotopes in marine sulfate (d18O SO4) measured in marine barite show variability over the past 10 million years, including a 5per mil decrease during the Plio-Pleistocene, with near-constant values during the Miocene that are slightly enriched over the modern ocean. A numerical model suggests that sea level fluctuations during Plio-Pleistocene glacial cycles affected the sulfur cycle by reducing the area of continental shelves and increasing the oxidative weathering of pyrite. The data also require that sulfate concentrations were 10 to 20% lower in the late Miocene than today.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Strontium and neodymium isotopic data are reported for barite samples chemically separated from Late Miocene to Pliocene sediments from the eastern equatorial Pacific. At a site within a region of very high productivity close to the equator, 87Sr/86Sr ratios in the barite separates are indistinguishable from those of foraminifera and fish teeth from the same samples. However, at two sites north of the productivity maximum barite separates have slightly, but consistently lower (averaging 0.000062) ratios than the coexisting phases, although values still fall within the total range of published values for the contemporaneous seawater strontium isotope curve. We examine possible causes for this offset including recrystallization of the foraminifera, fish teeth or barite, the presence of non-barite contaminants, or incorporation of older, reworked deep-sea barite; the inclusion of a small amount of hydrothermal barite in the sediments seems most consistent with our data, although there are difficulties associated with adequate production and transportation of this phase. Barite is unlikely to replace calcite as a preferred tracer of seawater strontium isotopes in carbonate-rich sediments, but may prove a useful substitute in cases where calcite is rare or strongly affected by diagenesis. In contrast to the case for strontium, neodymium isotopic ratios in the barite separates are far from expected values for contemporary seawater, and appear to be dominated by an (unobserved) eolian component with high neodymium concentration and low 143Nd/144Nd. These results suggest that the true potential of barite as an indicator of paleocean neodymium isotopic ratios and REE patterns will be realized only when a more selective separation procedure is developed.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The concentration changes in pore waters of dissolved calcium, magnesium, sulfate, strontium, and silica and of alkalinity are controlled by diagenetic reactions occurring within the biogenic sediments of DSDP Sites 572, 573, and 574. Downcore increases in dissolved Sr2 + indicate recrystallization of calcite, and increases in dissolved SiO2 reflect dissolution of amorphous silica. Minor gradients in dissolved Ca(2+) and Mg(2+) suggest little if any influence from reactions involving volcanic sediments or basalt. Differences in interstitial water profiles showing the downhole trends of these chemical species mark variations in carbonate and silica diagenesis, sediment compositions, and sedimentation rate histories among the sites. The location and extent of carbonate diagenesis in these sediments are determined from Sr/Ca distributions between the interstitial waters and the bulk carbonate samples. Pore water strontium increases in the upper 100 to 250 m of sediment are assumed to reflect diffusion from underlying zones where calcite recrystallization has occurred. On the basis of calculations of dissolved strontium production and comparisons between observed and calculated "equilibrium" Sr/Ca ratios of the solids, approximately 30 to 50% of the carbonate has recrystallized in these deeper intervals. These estimates agree with the observed amounts of chalk at these sites. Variations in Sr/Ca ratios of these carbonates reflect differences in calcareous microfossil content, in diagenetic history, and, possibly, in changes in seawater Sr/Ca with time. Samples of porcelanite recovered below 300 m at Site 572 suggest formation at temperatures 20 to 30° C greater than ones estimated assuming oceanic geothermal gradients from sedimentary sections similar to those recovered on Leg 85. The higher temperatures may partially account for higher Sr/Ca ratios determined for recrystallized carbonates from this site.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

A detailed rock magnetic investigation has been carried out on Deep Sea Drilling Project (DSDP) pelagic sediments from the Central Equatorial Pacific. This comprises hysteresis and thermomagnetic measurements, Lowrie-Fuller test and, for the first time, ferromagnetic resonance (FMR). Nearly stochiometric magnetite in two grain size fractions, single domain (SD) and multi domain (MD), has been deduced to be the carrier of magnetic remanence. Comparatively strong paramagnetic contributions are carried by pyrite, being identified by X-ray analysis. The statistical analysis of paleomagnetic parameters (NRM, MDF, initial susceptibility, Königsberger ratio Q) from a large number (> 1000) of samples, supported by hysteresis measurements, indicates a latitude and sedimentation rate dependent ratio of SD/MD grains. Possible sources for the magnetic constituents are discussed in terms of bacterial, volcanic, meteoritic and authigenic origin.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

From late middle Eocene through earliest Oligocene, high-latitude regions cooled, and by the end of the period, continental ice sheets existed in Antarctica. Diversity of planktonic microorganisms declined, and modern groups of terrestrial vertebrates originated. Coeval faunal changes in deep-sea benthic foraminifers have been related to cooling of deep waters and increased oxygenation. Cooling, however, occurred globally, whereas species richness declined at high latitudes and not in the tropics. The late Eocene and younger lower-diversity, high-latitude faunas typically contain common Epistominella exigua and Alabaminella weddellensis, opportunistic phytodetritus-exploiting species that indicate a seasonally fluctuating input of organic matter to the sea floor. We speculate that the species-richness gradient and increase in abundance of phytodetritus-exploiting species resulted largely from the onset of a more unpredictable and seasonally fluctuating food supply, especially at high latitudes.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

According to the drilling probes of the Deep Waier Drilling Project, Neogene sediments in a tropical area of the Pacific Ocean are divided into 15 zones based on diatoms. The author shows that a unique zonation may be applied for the entire region. Identification of diatoms zones boundaries was conducted through their direct correlation with nannoplancton, radiolarian and foraminiferal zonal sceals. Their ultra-structure and morphological relationship are being analysed. The mode of siliceous accumulation within the equatorial belt differed through the western central and eastern region since the early Miocene and the difference become more evident from the end of Middle Miocene. The distribution of Neogene diatomaceous silt in the tropical area is controlled by the character of gyre-water circulation and agrees with the modern geographical zonation.