429 resultados para 70-508
Resumo:
Data obtained while investigating the mounds area near the Galapagos Spreading Center demonstrate the direct influence of solutions derived from the interaction of seawater and young oceanic crust on the sedimentary cover. Investigation of metalliferous sediments from the mid-oceanic ridges, the Galapagos mounds, and the FAMOUS-area zone formations have shown that this influence and the resulting products are dependent on composition, temperature, and conditions of solution input. The study of sulfur in upwardly migrating solutions and the interaction of these solutions with sediments is of great interest. Investigations of different types of hydrothermally derived formations (Edmond, et al., 1979; Spiess et al., 1980; Styrt et al., 1981; Rosanova 1976; Grinenko et al., 1978) have shown the significant role of sulfur-bearing minerals in deposits formed from hightemperature solutions. In contrast, the addition of hydrothermal sulfur is negligible in those metalliferous sediments that precipitated as a result of the interaction between the solutions and open seawater (Bonatti et al., 1972, 1976; Gordeev et al., 1979; Migdisov, Bogdanov, et al., 1979). For example, sulfides are absent in clearly oxidized metalliferous sediments from the East Pacific Rise (EPR). Barite sulfur from these sediments is identical with seawater sulfate sulfur in isotope composition (Grinenko et al., 1978). Gurvich and Bogdanov (1977) have suggested that barium from EPR metalliferous sediments results completely from biological activity and from the components of ocean waters. Edmond et al. (1979) report that low-temperature springs from the Galapagos Rift axis contain two types of solutions: those with and those without H2S.
Resumo:
Geological and geophysical data collected during Deep Sea Drilling Project (DSDP) Leg 70 indicate that hydrothermal solutions are upwelling through the sediments of the mounds hydrothermal field (Sites 506, 507, and 509) and downwelling in the low heat-flow zone to the south (Site 508). Pore-water data are compatible with these conclusions. Pore waters at mounds sites are enriched in Ca and depleted in Mg relative to both seawater and Site 508 pore waters. These anomalies are believed to reflect prior reaction of the interstitial waters with basement rocks. The mounds solutions are also enriched in iron, which is probably hydrothermal and en route to forming nontronite. Concentrations of Si and NH3 in mounds pore water increase upcore as a result of the addition of dissolving biogenic debris to ascending hydrothermal solutions. Some low heat-flow pore-water samples (Site 508) are enriched in Ca and depleted in Mg. These anomalies likely reflect the presence of pockets of hydrothermal solutions in areas otherwise dominated by downwelling bottom water.
Resumo:
Since its discovery in 1974 (Klitgord and Mudie, 1974), the Galapagos mounds hydrothermal field has received much attention. Sediment samples were taken during Leg 54 of the Deep Sea Drilling Project (DSDP) and by other expeditions to the area (e.g., Corliss et al., 1978). While a hydrothermal origin for the mounds sediments has been generally accepted, several different theories of origin for the mounds themselves have been proposed (e.g., Corliss et al., 1978; Natland et al., 1979; Williams et al., 1979). One of the aims of DSDP Leg 70 was to return to the mounds field and, using the new hydraulic piston cor er described elsewhere in this volume, to obtain more complete recovery of mounds sediments than had previously been possible. It was our hope that this would help in our understanding of the nature and origin of these deposits. In this chapter, we describe the results of chemical analysis of over 250 sediment samples taken during the course of Leg 70.