421 resultados para 39-353
Resumo:
We obtained sediment physical properties and geochemical data from 47 piston and gravity cores located in the Bay of Bengal, to study the complex history of the Late Pleistocene run-off from the Ganges and Brahmaputra rivers and its imprint on the Bengal Fan. Grain-size parameters were predicted from core logs of density and velocity to infer sediment transport energy and to distinguish different environments along the 3000-km-long transport path from the delta platform to the lower fan. On the shelf, 27 cores indicate rapidly prograding delta foresets today that contain primarily mud, whereas outer shelf sediment has 25% higher silt contents, indicative of stronger and more stable transport regime, which prevent deposition and expose a Late Pleistocene relic surface. Deposition is currently directed towards the shelf canyon 'Swatch of No Ground', where turbidites are released to the only channel-levee system that is active on the fan during the Holocene. Active growth of the channel-levee system occurred throughout sea-level rise and highstand with a distinct growth phase at the end of the Younger Dryas. Coarse-grained material bypasses the upper fan and upper parts of the middle fan, where particle flow is enhanced as a result of flow-restriction in well-defined channels. Sandier material is deposited mainly as sheet-flow deposits on turbidite-dominated plains at the lower fan. The currently most active part of the fan with 10-40 cm thick turbidites is documented for the central channel including inner levees (e.g., site 40). Site 47 from the lower fan far to the east of the active channel-levee system indicates the end of turbidite sedimentation at 300 ka for that location. That time corresponds to the sea-level lowering during late isotopic stage 9 when sediment supply to the fan increased and led to channel avulsion farther upstream, probably indicating a close relation of climate variability and fan activity. Pelagic deep-sea sites 22 and 28 contain a 630-kyear record of climate response to orbital forcing with dominant 21- and 41-kyear cycles for carbonate and magnetic susceptibility, respectively, pointing to teleconnections of low-latitude monsoonal forcing on the precession band to high-latitude obliquity forcing. Upper slope sites 115, 124, and 126 contain a record of the response to high-frequency climate change in the Dansgaard-Oeschger bands during the last glacial cycle with shared frequencies between 0.75 and 2.5 kyear. Correlation of highs in Bengal Fan physical properties to lows in the d18O record of the GISP2 ice-core suggests that times of greater sediment transport energy in the Bay of Bengal are associated with cooler air temperatures over Greenland. Teleconnections were probably established through moisture and other greenhouse-gas forcing that could have been initiated by instabilities in the methane hydrate reservoir in the oceans.
Resumo:
This paper provides an overview of dust transport pathways and concentrations over the Arabian Sea during 1995. Results indicate that the transport and input of dust to the region is complex, being affected by both temporally and spatially important processes. Highest values of dust were found off the Omani coast and in the entrance to the Gulf of Oman. Dust levels were generally lower in summer than the other seasons, although still relatively high compared to other oceanic regions. The Findlater jet, rather than acting as a source of dust from Africa, appears to block the direct transport of dust to the open Arabian Sea from desert dust source regions in the Middle East and Iran/Pakistan. Dust transport aloft, above the jet, rather than at the surface, may be more important during summer. In an opposite pattern to dust, sea salt levels were exceedingly high during the summer monsoon, presumably due to the sustained strong surface winds. The high sea salt aerosols during the summer months may be impacting on the strong aerosol reflectance and absorbance signals over the Arabian Sea that are detected by satellite each year.