92 resultados para 323.2
Resumo:
The clay mineral composition at IODP Exp. 323 Site U1343 in the Bering Sea was analyzed so as to unravel their provenance over glacial-interglacial cycles for the last 2.4 Ma. Smectite was negatively correlated with the sum of illite and chlorite; therefore, their ratio [S/(I + C)] was used as an indicator of clay mineral composition changes. In general, the S/(I + C) ratio was rather similar for glacial and interglacial periods during most of the last 2.4 Ma. In addition, these results overlap with those of surface sediments in the modern East Aleutian Basin, which suggests that smectite-rich clay particles are delivered from the Aleutians by the northward Bering Slope Current (BSC) rather than from rivers in western Alaska. However, some clay mineral compositions of the glacial periods after the Mid-Pleistocene Transition (MPT: 1.25-0.7 Ma) were characterized by low illite and relatively high smectite. During this period, extensive ice-rafting might have transported the smectite-rich clay particles to Site U1343 from the glacial shelf off Alaska and/or from glacial rivers from that area.
Resumo:
A downhole decrease in 18O, Mg(2+) and K+, an increase in Ca(2+) and a low 87Sr/86Sr ratio of 0.7067 in the pore fluids of DSDP site 323 were caused principally by the alteration of volcanic material. These chemical and isotopic patterns were produced by the alteration, in order of decreasing importance of: a 60-m thick basal layer of volcanic ash; the underlying basalts; and igneous components in the 640-m thick upper sequence composed largely of terrigenous material. A significant portion of the alteration of the ash in the basal sequence must have occurred before the deposition of the upper sediments, perhaps under the influence of advecting solutions. The rest of the alteration occurred during the deposition of the thick upper sediments. Mass balance considerations and the low d18O values of most of the alteration products suggest that much of the later alteration occurred progressively over the last 13 Myr. The principal alteration products were smectite, potassium feldspar, clinoptilolite and calcite.
Resumo:
The modern depositional environment of the deep Norwegian-Greenland Sea is highly asymmetric in an E-W direction because of the hydrography of the surface water masses and because of the more or less permanent pack ice cover of the East Greenland Current regime along the Greenland continental margin. By means of sedimentation rates we have tried to investigate whether this hydrographic asymmetry influenced the sediment input to the Norwegian-Greenland Sea over the past 60 m.y. Sediment input can be quantified if thicknesses of sediment sections accumulated over known time intervals can be measured and if some of their physical properties have been determined. Sedimentation rates have been estimated for Tertiary and Quaternary times, and their temporal as well as their spatial changes are discussed. Basin structure and morphology exerted an important influence on sediment distribution. During the Early Tertiary major sediment source regions in the southern Barents Sea and to the north and west of Iceland could be identified; these source regions supplied the bulk of the sediment fill of the Norwegian-Greenland Sea. Since inception of a "glacial" type sedimentation major elements of the sea surface circulation seem to have controlled the sediment input into this polar and subpolar deep-sea basin.
Resumo:
In an attempt to establish criteria for obtaining reliable K-Ar dates, conventional K-Ar studies of several Deep Sea Drilling Project sites were undertaken. K-Ar dates of these rocks may be subject to inaccuracies as the result of sea-water alteration. Inaccuracies may also result from the presence of excess radiogenic 40Ar trapped in rapidly cooled rocks at the time of their formation. The results obtained for DSDP Leg 34 basalts indicate that lowering of K-Ar dates, which is related to potassium addition by weathering, is a major cause of uncertainty in obtaining reliable K-Ar dates for deep-sea rocks. It could not be determined if the potassium addition to the basalts occurred at the time of formation, t_o, or continuously from t_o to the present. Calculations show that sediment cover is not a significant barrier to the diffusion of potassium into the basalt. 40Ar loss contributes, at least in part, to the lowering of the K-Ar date in rocks that have added potassium. The meaning of the K-Ar results obtained for DSDP Legs 35 and 2 basalts could not be unambiguously established. Because of the problems involved, caution must be used in interpreting the meaning of conventional K-Ar dates for deep-sea rocks.