89 resultados para 301-2
Resumo:
In deep subsurface sediments of the Juan de Fuca Ridge Flank, porewater acetate that is depleted in 13C relative to sedimentary organic matter indicates an acetogenic component to total acetate production. Thermodynamic calculations indicate common fermentation products or lignin monomers as potential substrates for acetogenesis. The classic autotrophic reaction may contribute as well, provided that dihydrogen (H2) concentrations are not drawn down to the thermodynamic thresholds of the energetically more favorable processes of sulfate reduction and methanogenesis. A high diversity of novel formyl tetrahydrofolate synthetase (fhs) genes throughout the upper half of the sediment column indicates the genetic potential for acetogenesis. Our results suggest that a substantial fraction of the acetate produced in marine sediment porewaters may derive from acetogenesis, in addition to the conventionally invoked sources fermentation and sulfate reduction.
Resumo:
A sediment core from the West Spitsbergen continental margin was studied to reconstruct climate and paleoceanographic variability during the last ~9 ka in the eastern Fram Strait. Our multiproxy evidence suggests that the establishment of the modern oceanographic configuration in the eastern Fram Strait occurred stepwise, in response to the postglacial sea-level rise and the related onset of modern sea-ice production on the shallow Siberian shelves. The late Early and Mid Holocene interval (9 to 5 ka) was generally characterized by relatively unstable conditions. High abundance of the subpolar planktic foraminifer species Turborotalita quinqueloba implies strong intensity of Atlantic Water (AW) inflow with high productivity and/or high AW temperatures, resulting in a strong heat flux to the Arctic. A series of short-lived cooling events (8.2, 6.9. and 6.1 ka) occurred superimposed on the warm late Early and Mid Holocene conditions. Our proxy data imply that simultaneous to the complete postglacial flooding of Arctic shallow shelves and the initiation of modern sea-ice production, strong advance of polar waters initiated modern oceanographic conditions in the eastern Fram Strait at ~5.2 ka. The Late Holocene was marked by the dominance of the polar planktic foraminifer species Neogloboquadrina pachyderma, a significant expansion of sea ice/icebergs, and strong stratification of the water column. Although planktic foraminiferal assemblages as well as sea surface and subsurface temperatures suggest a return of slightly strengthened advection of subsurface Atlantic Water after 3 ka, a relatively stable cold-water layer prevailed at the sea surface and the study site was probably located within the seasonally fluctuating marginal ice zone during the Neoglacial period.
Resumo:
The northwestern Cascadia Basin of western North America accumulated high-sedimentation-rate sequences during the Pleistocene sea-level low-stands. The continental shelf was largely exposed at that time, and rivers and estuaries delivered large sediment fluxes directly to the deep ocean. The IODP EXP1301 core, which was taken from the middle portion of the Cascadia Basin, is well preserved and exhibits the deeper and - more distal sedimentary facies. The lithology in this location is composed of two units, 1) hemipelagic mud with a thin sand layer and 2) thick, coarsening upward silt-sand turbidites with a small proportion of granules at the top. We will focus on the detailed sand-grain proportions in order to understand the origin of these sediments. We determined the modal proportions of the heavy minerals, and the chemical composition of olivine and orthopyroxene in fourteen samples. These are characterized by an abundance of amphibole, pyroxenes and epidote, and the presence of minerals derived from peridotite. There is no drastic change in the modal and mineral compositions of the sands and silts between the turbidite and hemipelagic sequences. There were two probable drainage systems on the continent, the Frazer and Columbia rivers, which shed turbidites into the Cascadia Basin after 1.6 Ma, especially at 0.46-0.76 Ma. Based on a comparison of the modal and mineral compositions, the Northern Cascadia Basin has been supplied with sediments, mainly from the Frazer River, through the Straits of Juan de Fuca, by Pleistocene to Holocene turbidites.