25 resultados para 26-258
Resumo:
Miocene paleoceanographic evolution exhibits major changes resulting from the opening and closing of passages, the subsequent changes in oceanic circulation, and development of major Antarctic glaciation. The consequences and timing of these events can be observed in variations in the distribution of deep-sea hiatuses, sedimentation patterns, and biogeographic distribution of planktic organisms. The opening of the Drake Passage in the latest Oligocene to early Miocene (25-20 Ma) resulted in the establishment of the deep circumpolar current, which led to thermal isolation of Antarctica and increased global cooling. This development was associated with a major turnover in planktic organisms, resulting in the evolution of Neogene assemblages and the eventual extinction of Paleogene assemblages. The erosive patterns of two widespread hiatuses (PH, 23.0-22.5 Ma; and NH 1, 20-18 Ma) indicate that a deep circumequatorial circulation existed at this time, characterized by a broad band of carbonate-ooze deposition. Siliceous sedimentation was restricted to the North Atlantic and a narrow band around Antarctica. A major reorganization in deep-sea sedimentation and hiatus distribution patterns occurred near the early/middle Miocene boundary, apparently resulting from changes in oceanic circulation. Beginning at this time, deep-sea erosion occurred throughout the Caribbean (hiatus NH 2, 16-15 Ma), suggesting disruption of the deep circumequatorial circulation and northward deflection of deep currents, and/or intensification of the Gulf Stream. Sediment distribution patterns changed dramatically with the sudden appearance of siliceous-ooze deposition in the marginal and east equatorial North Pacific by 16.0 to 15.5 Ma, coincident with the decline of siliceous sedimentation in the North Atlantic. This silica switch may have been caused by the introduction of Norwegian Overflow Water into the North Atlantic acting as a barrier to outcropping of silica-rich Antarctic Bottom Water. The main aspects of the present oceanic circulation system and sediment distribution pattern were established by 13.5 to 12.5 Ma (hiatus NH 3), coincident with the establishment of a major East Antarctic ice cap. Antarctic glaciation resulted in a broadening belt of siliceous-ooze deposition around Antarctica, increased siliceous sedimentation in the marginal and east equatorial North Pacific and Indian Oceans, and further northward restriction of siliceous sediments in the North Atlantic. Periodic cool climatic events were accompanied by lower eustatic sea levels and widespread deep-sea erosion at 12 to 11 Ma (NH 4), 10 to 9 Ma (NH 5), 7.5 to 6.2 Ma (NH 6), and 5.2 to 4.7 Ma (NH 7).
Resumo:
Geochemical studies of Cretaceous strata rich in organic carbon (OC) from Deep Sea Drilling Project (DSDP) sites and several land sections reveal several consistent relationships among amount of OC, hydrocarbon generating potential of kerogen (measured by pyrolysis as the hydrogen index, HI), and the isotopic composition of the OC. First, there is a positive correlation between HI and OC in strata that contain more than about 1% OC. Second, percent OC and HI often are negatively correlated with carbon isotopic composition (delta13C) of kerogen. The relationship between HI and OC indicates that as the amount of organic matter increases, this organic matter tends to be more lipid rich reflecting the marine source of the organic matter. Cretaceous samples that contain predominantly marine organic matter tend to be isotopically lighter than those that contain predominantly terrestrial organic matter. Average delta13C values for organic matter from most Cretaceous sites are between -26 and -28 per mil, and values heavier than about -25 per mil occur at very few sites. Most of the delta13C values of Miocene to Holocene OC-rich strata and modern marine plankton are between -16 to -23 per mil. Values of delta13C of modern terrestrial organic matter are mostly between -23 and -33 per mil. The depletion of terrestial OC in 13C relative to marine planktonic OC is the basis for numerous statements in the literature that isotopically light Cretaceous organic matter is of terrestrial origin, even though other organic geochemical and(or) optical indicators show that the organic matter is mainly of marine origin. A difference of about 5 per mil in delta13C between modern and Cretaceous OC-rich marine strata suggests either that Cretaceous marine planktonic organic matter had the same isotopic signature as modern marine plankton and that signature has been changed by diagenesis, or that OC derived from Cretaceous marine plankton was isotopically lighter by about 5 per mil relative to modern plankton OC. Diagenesis does not produce a significant shift in delta13C in Miocene to Holocene sediments, and therefore probably did not produce the isotopically light Cretaceous OC. This means that Cretaceous marine plankton must have had delta13C values that were about 5 per mil lighter than modern marine plankton, and at least several per mil lighter than Cretaceous terrestrial vegetation. The reason for these lighter values, however, is not obvious. It has been proposed that concentrations of CO2 were higher during the middle Cretaceous, and this more available CO2 may be responsible for the lighter delta13C values of Cretaceous marine organic matter.
Resumo:
Large variations exist between published mid-Cretaceous (late Barremian to early Turonian stages) seawater Sr-isotope stratigraphies; this has resulted in disparate interpretations of crustal production rates. We report on a detailed investigation of seawater Sr-isotope stratigraphy based on foraminifers and, where available, on inoceramid bivalves from 12 mid-Cretaceous Deep Sea Drilling Project and Ocean Drilling Program sections. The effects of diagenesis are assessed using scanning electron microscope observations and trace-elemental analyses, but are best distinguished by comparing the 87Sr/86Sr values of similar-age samples from different sites. Strontium-isotope analyses compiled from 9 of 12 sites that have detailed age control define one band of common values. This band is used as a composite curve, which presumably represents seawater 87Sr/86Sr values. The composite curve shows a "trough" of markedly lower 87Sr/86Sr values in the Aptian and early Albian stages, higher but constant values for the middle Albian-Cenomanian stages, followed by a decrease in 87Sr/86Sr values in the early Turonian. Variations between published mid-Cretaceous Sr-isotope records result from diagenetic alteration, analytical problems, and the diverse biostratigraphic approaches and assumptions used to estimate sample ages. When preexisting age data are made consistent, the composite record shows close similarities with data sets derived from measurements of macrofossils in land sections of Europe and North America. The interval of decreased 87Sr/86Sr values in the Aptian-Albian stages overlaps with the pulse of mid-plate volcanic activity that produced the Ontong Java, Manihiki, and Kerguelen Plateaus. The exact age and the shape of the trough, however, are consistent with increased spreading rates at oceanic ridges, given the existing data on the timing of mid-plate volcanic activity.