470 resultados para 207-1261
Resumo:
Ocean Drilling Program (ODP) Leg 207 recovered expanded sections of organic-carbon-rich laminated shales on Demerara Rise (western tropical Atlantic). High-resolution organic carbon isotope and total organic carbon (TOC) records are presented, which span the Cenomanian-Turonian boundary interval (CTBI), including the Oceanic Anoxic Event (OAE) 2, from four sites oriented along a NW striking depth transect. These records represent the first high-resolution carbon isotope records across OAE 2 from the South American margin of the tropical Atlantic. Due to the scarcity of age significant fossils, the main purpose of this study was to develop a detailed carbon isotope stratigraphy in order to correlate the CTBI across the depth transect and to tie this to biostratigraphically well-defined sections in the Western Interior Basin (Pueblo, USA), boreal shelf seas (Eastbourne, England), and western Tethys (Oued Mellegue, Tunisia). All four sections studied document a 6 per mil increase of d13Corg values at the base of the CTBI, which is followed by an interval of elevated d13Corg values and a subsequent decrease. Our results supply an important stratigraphic base for subsequent paleoceanographic studies on Late Cenomanian to Early Turonian sediments from Demerara Rise and elsewhere.
Resumo:
Ocean Drilling Program Leg 207 recovered thick sequences of Albian to Santonian organic-carbon-rich claystones at five drill-sites on the Demerara Rise in the western equatorial Atlantic Ocean. Dark-colored, finely laminated, Cenomanian-Santonian black shale sequences contain between 2% and 15% organic carbon and encompass Oceanic Anoxic Events 2 and 3. High Rock-Eval hydrogen indices signify that the bulk of the organic matter in these sequences is marine in origin. However, d13Corg values lie mostly between -30 per mil and -27 per mil, and TOC/TN ratios range from 15 to 42, which both mimic the source signatures of modern C3 land plants. The contradictions in organic matter source indicators provide important implications about the depositional conditions leading to the black shale accumulations. The low d13Corg values, which are actually common in mid-Cretaceous marine organic matter, are consequences of the greenhouse climate prevailing at that time and an associated accelerated hydrologic cycle. The elevated C/N ratios, which are also typical of black shales, indicate depressed organic matter degradation associated with low-oxygen conditions in the water column that favored preservation of carbon-rich forms of marine organic matter over nitrogen-rich components. Underlying the laminated Cenomanian-Santonian sequences are homogeneous, dark-colored, lower to middle Albian siltstones that contain between 0.2% and 9% organic carbon. The organic matter in these rocks is mostly marine in origin, but it occasionally includes large proportions of land-derived material.
Resumo:
Ocean Drilling Program (ODP) Sites 1257-1261 recovered thick sections of Upper Cretaceous-Eocene oceanic sediments on Demerara Rise off the east coast of Surinam and French Guiana, South America. Paleomagnetic and rock magnetic measurements of ~800 minicores established a high-resolution composite magnetostratigraphy spanning most of the Maastrichtian-Eocene. Magnetic behavior during demagnetization varied among lithologies, but thermal demagnetization steps >200°C were generally successful in removing present-day normal polarity overprints and a downward overprint induced during the ODP coring process. Characteristic remanent magnetizations and associated polarity interpretations were generally assigned to directions observed at 200°-400°C, and the associated polarity interpretations were partially based on whether the characteristic direction was aligned or apparently opposite to the low-temperature "north-directed" overprint. Biostratigraphy and polarity patterns constrained assignment of polarity chrons. The composite sections have a complete polarity record of Chrons C18n (middle Eocene)-C34n (Late Cretaceous).