553 resultados para 201-1226E


Relevância:

100.00% 100.00%

Publicador:

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Organic matter deposited and buried under the seafloor is one of the major carbon sources for microbial life in the deep subsurface of the ocean. In this report, we present a compilation of all available total organic carbon (TOC) and total inorganic carbon (TIC) data for the sites drilled during Ocean Drilling Program (ODP) Leg 201. We include the TOC and TIC data from sites of Deep Sea Drilling (DSDP) Leg 34 and ODP Legs 112 and 138 (Yeats, Hart, et al., 1976, doi:10.2973/dsdp.proc.34.1976; Suess, von Huene, et al., 1988, doi:10.2973/odp.proc.ir.112.1988; Mayer, Pisias, Janecek, et al., 1992, doi:10.2973/odp.proc.ir.138.1992), which were reoccupied during ODP Leg 201. Additional data from Leg 201 shore-based analyses are also included in the compilation.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Hydroxylated glycerol dialkyl glycerol tetraethers (hydroxy-GDGTs) were detected in marine sediments of diverse depositional regimes and ages. Mass spectrometric evidence, complemented by information gleaned from two-dimensional (2D) 1H-13C nuclear magnetic resonance (NMR) spectroscopy on minute quantities of target analyte isolated from marine sediment, allowed us to identify one major compound as a monohydroxy-GDGT with acyclic biphytanyl moieties (OH-GDGT-0). NMR spectroscopic and mass spectrometric data indicate the presence of a tertiary hydroxyl group suggesting the compounds are the tetraether analogues of the widespread hydroxylated archaeol derivatives that have received great attention in geochemical studies of the last two decades. Three other related compounds were assigned as acyclic dihydroxy-GDGT (2OH-GDGT-0) and monohydroxy-GDGT with one (OH-GDGT-1) and two cyclopentane rings (OH-GDGT-2). Based on the identification of hydroxy-GDGT core lipids, a group of previously reported unknown intact polar lipids (IPLs), including the ubiquitously distributed H341-GDGT (Lipp J. S. and Hinrichs K. -U. (2009) Structural diversity and fate of intact polar lipids in marine sediments. Geochim. Cosmochim. Acta 73, 6816-6833), and its analogues were tentatively identified as glycosidic hydroxy-GDGTs. In addition to marine sediments, we also detected hydroxy-GDGTs in a culture of Methanothermococcus thermolithotrophicus. Given the previous finding of the putative polar precursor H341-GDGT in the planktonic marine crenarchaeon Nitrosopumilus maritimus, these compounds are synthesized by representatives of both cren- and euryarchaeota. The ubiquitous distribution and apparent substantial abundance of hydroxy-GDGT core lipids in marine sediments (up to 8% of total isoprenoid core GDGTs) point to their potential as proxies.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Deep drilling into the marine sea floor has uncovered a vast sedimentary ecosystem of microbial cells (Parkes et al., 1994, doi:10.1038/371410a0; D'Hondt et al., 2004, doi:10.1126/science.1101155). Extrapolation of direct counts of stained microbial cells to the total volume of habitable marine subsurface sediments suggests that between 56 Pg (Parkes et al., 1994, doi:10.1038/371410a0) and 303 Pg (Whitman et al., 1998) of cellular carbon could be stored in this largely unexplored habitat. From recent studies using various culture-independent techniques, no clear picture has yet emerged as to whether Archaea or Bacteria are more abundant in this extensive ecosystem (Schippers et al., doi:10.1038/nature03302; Inagaki et al., doi:10.1073/pnas.0511033103 ; Mauclaire et al., doi:10.1111/j.1472-4677.2004.00035.x; Biddle et al., doi:10.1073/pnas.0600035103). Here we show that in subsurface sediments buried deeper than 1 m in a wide range of oceanographic settings at least 87% of intact polar membrane lipids, biomarkers for the presence of live cells (Biddle et al., doi:10.1073/pnas.0600035103; Sturt et al., 2004, doi:10.1002/rcm.1378), are attributable to archaeal membranes, suggesting that Archaea constitute a major fraction of the biomass. Results obtained from modified quantitative polymerase chain reaction and slot-blot hybridization protocols support the lipid-based evidence and indicate that these techniques have previously underestimated archaeal biomass. The lipid concentrations are proportional to those of total organic carbon. On the basis of this relationship, we derived an independent estimate of amounts of cellular carbon in the global marine subsurface biosphere. Our estimate of 90 Pg of cellular carbon is consistent, within an order of magnitude, with previous estimates, and underscores the importance of marine subsurface habitats for global biomass budgets.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The membrane lipids diglycosyl-glycerol dibiphytanyl glycerol tetraethers (2G-GDGTs) in marine subsurface sediments are believed to originate from uncultivated benthic archaea, yet the production of 2G-GDGTs from subseafloor samples has not been demonstrated in vitro. In order to validate sedimentary biosynthesis of 2G-GDGTs, we performed a stable carbon isotope probing experiment on a subseafloor sample with six different 13C-labelled substrates (bicarbonate, methane, acetate, leucine, glucose and Spirulina platensis biomass). After 468 days of anoxic incubation, only glucose and S. platensis resulted in label uptake in lipid moieties of 2G-GDGTs, indicating incorporation of carbon from these organic substrates. The hydrophobic moieties of 2G-GDGTs showed minimal label incorporation, with up to 4 per mil 13C enrichment detected in crenarchaeol-derived tricyclic biphytane from the S. platensis-supplemented slurries. The 2G-GDGT-derived glucose or glycerol moieties also showed 13C incorporation (Dd13C = 18 - 38 per mil) in the incubations with glucose or S. platensis, consistent with a lipid salvage mechanism utilized by marine benthic archaea to produce new 2G-GDGTs. The production rates were nevertheless rather slow, even when labile organic matter was supplied. The 2G-GDGT turnover times of 1700 - 20 500 years were much longer than those estimated for subseafloor microbial communities, implying that sedimentary 2G-GDGTs as biomarkers of benthic archaea are cumulative records of past and present generations.