567 resultados para 2 cruises
Resumo:
Based on data from R.V. Pelagia, R.V. Sonne and R.V. Meteor multibeam sonar surveys, a high resolution bathymetry was generated for the Mozambique Ridge. The mapping area is divided into five sheets, one overview and four sub-sheets. The boundaries are (west/east/south/north): Sheet 1: 28°30' E/37°00' E/36°20' S/24°50' S; Sheet 2: 32°45' E/36°45' E/28°20' S/25°20' S; Sheet 3: 31°30' E/36°45' E/30°20' S/28°10' S; Sheet 4: 30°30' E/36°30' E/33°15' S/30°15' S; Sheet 5: 28°30' E/36°10' E/36°20' S/33°10' S. Each sheet was generated twice: one from swath sonar bathymetry only, the other one is completed with depths from ETOPO2 predicted bathymetry. Basic outcome of the investigation are Digital Terrain Models (DTM), one for each sheet with 0.05 arcmin (~91 meter) grid spacing and one for the entire area (sheet 1) with 0.1 arcmin grid spacing. The DTM's were utilized for contouring and generating maps. The grid formats are NetCDF (Network Common Data Form) and ASCII (ESRI ArcGIS exchange format). The Maps are formatted as jpg-images and as small sized PNG (Portable Network Graphics) preview images. The provided maps have a paper size of DIN A0 (1189 x 841 mm).
Resumo:
Manganese nodules research has focused on the area between the Clarion Fracture Zone to the North and the Clipperton Fracture Zone to the South where significant concentrations were found ni Ni-Cu. During the CCOP/SOPAC-IOC/IDOE International workshop on the "Geology Mineral Resources and Geophysics of the South Pacific" held in Fiji in September 1975, a working group on manganese nodules was formed by scientists from: CNEXO, Brest, the Institute of Oceanography, New Zealand, Imperial College, London and the Technical University of Aachen. A draft project was presented in July 1976 by J. Andrews, University of Hawaii and G. Pautot, Cnexo on a joint survey under the name of: "Hawaii-Tahiti Transect program". Further details were worked on in September 1976 during the International Geological Congress in Sydney with the participation of D. Cronan, Imperial College, Glasby, New Zealand Geological Survey and G. Friedrich, Aachen TU. The scientific final program was established in July 1977, planning on the participation of three research vessels: the Suroit (CNEXO), the Kana Keoki (U. of Hawaii) and the Sonne (Aachen TU). Several survey areas were selected across the Pacific Ocean (Areas A, B, C, D, E, F, G and H) with about the same crustal age (about 40 million years) and a similar water depths. Being near large fault zones, the ares would be adequate to study the influences of biological productivity, sedimentation rate and possibly volcanic activity on the formation and growth of manganese nodules. The influnece of volcanic activity study would particularly apply to area G being situated near the Marquesas Fracture Zone. The cruise from R/V Sonne started in August 1978 over areas C, D, F, G K. The R/V suroit conducted a similar expedition in 1979 over areas A, B, C, D, E, H and I. Others cruises were planned during the 1979-1980 for the R/V Kana Keoki. The present text relates the R/V Sonne Cruises SO-06/1 and SO-06/2 held within the frame work of this international cooperative project.
Resumo:
We assessed relationships between phytoplankton standing stock, measured as chlorophyll a (Chl a), primary production (PP), and heterotrophic picoplankton production (HPP), in the epipelagic zone (0-100 m) as well as in the mesopelagic zone (100-1,000 m) in the polar frontal zone of the Atlantic sector of the Southern Ocean in austral summer (late December to January) and fall (March to early May). Integrated epipelagic HPP was positively correlated to integrated PP in summer (data for fall are not available) but not to integrated Chl a. However, integrated mesopelagic HPP was positively correlated to Chl a in summer as well as fall. The mesopelagic fraction of HPP as a percentage of total HPP was also positively correlated to Chl a, whereas the epipelagic fraction of HPP was negatively correlated to it. These results indicate that with increasing phytoplankton standing stock, constituted mainly of highly silicified diatoms, the focus of its consumption by heterotrophic picoplankton shifts from epipelagic to mesopelagic waters. With a growth efficiency of 30%, our HPP data indicate that in both the epipelagic and mesopelagic zone heterotrophic picoplankton consume 20% of PP. Mesopelagic heterotrophic picoplankton consumed around 80% of the sinking flux, measured from depletion of 234Th, which is a lower fraction than that reported from the central and subarctic Pacific. Our analysis indicates that it is important to include mesopelagic HPP in comprehensive assessments of the microbial consumption of PP, phytoplankton biomass, and particulate organic matter in cold oceanic systems with high rates of export production.