25 resultados para 2 CONTRASTING LANDSCAPES
Resumo:
Analyses of stable isotopes of monospecific planktonic foraminifers (G. quadrilobatus group) and monogeneric benthic foraminifers (Cibicidoides spp.) from late Neogene Atlantic Site 502 and Pacific Site 503 were conducted in order to determine the paleoceanographic changes resulting from the late Neogene uplift of the Panama Isthmus and from climatic cooling. In general, results at each site are similar to those from previous studies for the late Miocene and late Pliocene time interval, documenting the late Miocene (6 Ma) shift in carbon isotopes and the inferred growth of permanent Northern Hemisphere continental ice sheets beginning about 3.2 Ma. Comparison of Atlantic-Pacific planktonic-benthic isotope data for four stratigraphic intervals (~6-8, ~5-6, ~3-5, and ~2-3 Ma) suggests that increasing isolation of Atlantic and Pacific low-latitude waters may be related to the emergence of the Panama Isthmus. The contrast between Atlantic and Pacific benthic foraminiferal d13C increased in two steps from 0.60 per mil to 1 per mil (the modern contrast) at about 6 Ma and 3 Ma. The first increase (0.15 per mil) may represent the end of previously limited deep-water communication between the Atlantic and Pacific at the present location of Panama. The second increase (0.25 per mil) may be due to increased production of North Atlantic Deep Water. This probably reflects the development of modern deep-sea circulation. The d18O of planktonic foraminifers begins to increase in Atlantic Site 502 at 4.2 Ma and may reflect the increasing salinity of the North Atlantic Ocean arising from diminishing surface-water exchange across Panama. This increase is clearly shown by contrasting the d18O of Atlantic and Pacific planktonic foraminifers, as well as the d18O of planktonic and benthic foraminifers at Site 502. This inferred increase in surface-water salinity begins at the time of increasing provinciality of Atlantic and Pacific planktonic foraminifers.
Resumo:
The chemical structure of refractory marine dissolved organic matter (DOM) is still largely unknown. Electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry (ESI FT-ICR-MS) was used to resolve the complex mixtures of DOM and provide valuable information on elemental compositions on a molecular scale. We characterized and compared DOM from two sharply contrasting aquatic environments, algal-derived DOM from the Weddell Sea (Antarctica) and terrigenous DOM from pore water of a tropical mangrove area in northern Brazil. Several thousand molecular formulas in the mass range of 300-600 Da were identified and reproduced in element ratio plots. On the basis of molecular elemental composition and double-bond equivalents (DBE) we calculated an average composition for marine DOM. O/C ratios in the marine samples were lower (0.36 ± 0.01) than in the mangrove pore-water sample (0.42). A small proportion of chemical formulas with higher molecular mass in the marine samples were characterized by very low O/C and H/C ratios probably reflecting amphiphilic properties. The average number of unsaturations in the marine samples was surprisingly high (DBE = 9.9; mangrove pore water: DBE = 9.4) most likely due to a significant contribution of carbonyl carbon. There was no significant difference in elemental composition between surface and deep-water DOM in the Weddell Sea. Although there were some molecules with unique marine elemental composition, there was a conspicuous degree of similarity between the terrigenous and algal-derived end members. Approximately one third of the molecular formulas were present in all marine as well as in the mangrove samples. We infer that different forms of microbial degradation ultimately lead to similar structural features that are intrinsically refractory, independent of the source of the organic matter and the environmental conditions where degradation took place.
Resumo:
Laminated sediments spanning the last 20,000 years (though not continuously) in the Shaban Deep, a brine-filled basin in the northern Red Sea, were analyzed microscopically and with backscattered electron imagery in order to determine laminae composition with emphasis on the diatomaceous component. Based on this detailed study, we present schematic models to propose paleoflux scenarios for laminae formation at different time-slices. The investigated core (GeoB 5836-2; 26°12.61'N, 35°21.56'E; water depth 1475 m) shows light and dark alternating laminae that are easily distinguishable in the mid-Holocene and at the end of the deglaciation (13-15 ka) period. Light layers are mainly composed of coccoliths, terrigenous material and diatom fragments, while dark layers consist almost exclusively of diatom frustules (monospecific or mixed assemblages). The regularity in the occurrence of coccolith/diatom couplets points to an annual deposition cycle where contrasting seasons and associated plankton blooms are represented (diatoms-fall/winter deposition, coccoliths-summer signal). We propose that, for the past ~15,000 years, the laminations represent two-season annual varves. Strong dissolution of carbonate, with the concomitant loss of the coccolith-rich layer in sediments older than 15 ka, prevents us from presenting a schematic model of annual deposition. However, the diatomaceous component reveals a marked switch in species composition between Last Glacial Maximum (LGM) sediments (dominated by Chaetoceros resting spores) and sediments somewhat younger (18-19 ka; dominated by Rhizosolenia). We propose that different diatom assemblages reflect changing conditions in stratification in the northern Red Sea: Strong stratification conditions, such as during two meltwater pulses at 14.5 and 11.4 ka, are reflected in the sediment by Rhizosolenia layers, while Chaetoceros-dominated assemblages represent deep convection conditions.
Resumo:
We performed bird predation experiments (dummy experiments), using artificial prey and bird community data to investigate the importance of predator diversity vs. predator identity in cacao agroforestry landscapes. All sample sites were situated at the northern tip of Napu Valley in Central Sulawesi, Indonesia. After an initial mapping of the study area, we selected 15 smallholder cacao plantations as sites for our exclosure experiments in March 2010. For our predation experiment, we selected 10 (out of 15) study sites and 5 cacao trees per site for the application of artificial prey for birds (dummy caterpillars made of plasticine). Our study trees (numbered from 1 to 5 per site) were randomly chosen and we kept spacing of at least two unmanipulated cacao trees between two study trees to avoid clumped distribution. To quantify both daytime/diurnal predation and night-time/nocturnal predation (e.g. birds vs. bats), we applied 7 caterpillar dummies on all study trees and controlled them for predation marks in the early morning (05:00-06:00 am), in the evening (17:00-18:00 pm) and in the early morning on the next day (completing one survey round). In total, we performed four survey rounds per study site (in June and July 2011). The caterpillar dummies were always applied in the same order and on three different parts of each cacao study tree: One 'control dummy' (located on first branching of the cacao tree); 3 'branch dummies' (located on one main branch coming from first branching; 20-25 cm between single dummies) and 3 'leaf dummies' (3 medium aged cacao trees adjacent to main branch were selected and single dummies placed in the center of each cacao leaf). The different positions were chosen to control for different foraging modes of predators (e.g. branch gleaners versus leaf gleaners). During day- and nighttime surveys, we controlled if the dummy caterpillars were still present in their original position, if they were absent and could not be relocated on the ground or if they were fallen to the ground, but could still be recorded. Eaten dummies were counted as 1 mark usually, except for those dummies, where two or more different kind of arthropods had eaten parts of the dummy (2 marks or more). Other predation marks were added to this number. For each dummy, we counted the total number of different predation marks. We focused on predation marks that could be identified with certainty (based on preliminary observations and/or literature): marks of birds, rodents and snails. Finally, we analysed the relationship of bird predation marks and bird community parameters (abundance vs. diversity), as well as effects of local and landscape management on the avian predation success.
Resumo:
We present measurements of pCO2, O2 concentration, biological oxygen saturation (Delta O2/Ar) and N2 saturation (Delta N2) in Southern Ocean surface waters during austral summer, 2010-2011. Phytoplankton biomass varied strongly across distinct hydrographic zones, with high chlorophyll a (Chla) concentrations in regions of frontal mixing and sea-ice melt. pCO2 and Delta O2 /Ar exhibited large spatial gradients (range 90 to 450 µatm and -10 to 60%, respectively) and co-varied strongly with Chla. However, the ratio of biological O2 accumulation to dissolved inorganic carbon (DIC) drawdown was significantly lower than expected from photosynthetic stoichiometry, reflecting the differential time-scales of O2 and CO2 air-sea equilibration. We measured significant oceanic CO2 uptake, with a mean air-sea flux (~ -20 mmol m-2 d-1) that significantly exceeded regional climatological values. N2 was mostly supersaturated in surface waters (mean Delta N2 of +2.5 %), while physical processes resulted in both supersaturation and undersaturation of mixed layer O2 (mean Delta O2phys = 2.1 %). Box model calculations were able to reproduce much of the spatial variability of Delta N2 and Delta O2phys along the cruise track, demonstrating significant effects of air-sea exchange processes (e.g. atmospheric pressure changes and bubble injection) and mixed layer entrainment on surface gas disequilibria. Net community production (NCP) derived from entrainment-corrected surface Delta O2 /Ar data, ranged from ~ -40 to > 300 mmol O2 m-2 d-1 and showed good coherence with independent NCP estimates based on seasonal mixed layer DIC deficits. Elevated NCP was observed in hydrographic frontal zones and regions of sea-ice melt with shallow mixed layer depths, reflecting the importance of mixing in controlling surface water light and nutrient availability.
Resumo:
In 2001 we started as part of the EU FP5 project Greenveins monitoring of insect communities in the normal landscape of Saxony-Anhalt (Germany), which is dominated by agricultural use. We selected four landscape sites of 4x4 km and recorded insects using combined flight traps, combining the ideas of window and yellow pan traps (see Duelli et al., 1999). Traps consist of a yellow funnel (25 cm diameter) filled with water (preserving agent added) and two perspex windows mounted in a way that they are crossed in the center. Within each square km of a site one trap was placed at ecotones between semi-natural habitats and agricultural fields (16 traps per site). Traps were operated in late spring-early summer (three sampling rounds) and late summer (three sampling rounds). Follow-up sampling started in 2010 as long-term monitoring within the TERENO project (www.tereno.net), contributing to the LTER network (Long-Term Ecosystem Research) in Germany (www.lter-d.de) and internationally as well (www.lter-europe.net). Metadata about the sites and related activities and data sets can be found in the DEIMS Repository for Research Sites and Datasets (https://data.lter-europe.net/deims/). In 2010 another two landscapes were added and yearly sampled in the same way. Due to long processing time of trapped insects data of follow-up years will be available about 18 months after trapping.