191 resultados para 193-1191A
Resumo:
Permeability of the ocean crust is one of the most crucial parameters for constraining submarine fluid flow systems. Active hydrothermal fields are dynamic areas where fluid flow strongly affects the geochemistry and biology of the surrounding environment. There have been few permeability measurements in these regions, especially in felsic-hosted hydrothermal systems. We present a data set of 38 permeability and porosity measurements from the PACMANUS hydrothermal field, an actively venting, felsic hydrothermal field in the eastern Manus Basin. Permeability was measured using a complex transient method on 2.54-cm minicores. Permeability varies greatly between the samples, spanning over five orders of magnitude. Permeability decreases with both depth and decreasing porosity. When the alteration intensity of individual samples is considered, relationships between depth and porosity and permeability become more clearly defined. For incompletely altered samples (defined as >5% fresh rock), permeability and porosity are constant with depth. For completely altered samples (defined as <5% fresh rock), permeability and porosity decrease with depth. On average, the permeability values from the PACMANUS hydrothermal field are greater than those in other submarine environments using similar core-scale laboratory measurements; the average permeability, 4.5 x 10-16 m**2, is two to four orders of magnitude greater than in other areas. Although the core-scale permeability is higher than in other seafloor environments, it is still too low to obtain the fluid velocities observed in the PACMANUS hydrothermal field based on simplified analytical calculations. It is likely that core-scale permeability measurements are not representative of bulk rock permeability of the hydrothermal system overall, and that the latter is predominantly fracture controlled.
Resumo:
Leg 193 was the fourth Ocean Drilling Program expedition focusing on understanding subseafloor hydrothermal systems. This program was the first to combine studies of the volcanology, structure, hydrology, mineralization, and microbiology of a subseafloor hydrothermal system hosted by felsic rocks by coring at the PACMANUS hydrothermal field in the Manus Basin, Papua New Guinea. The study examines only the petrology and bulk rock and mineral chemistry of the freshest and most morphologically youthful lava flows recovered from the shallowest drill cores at the four sites occupied during Leg 193. There are subtle but distinct petrographic and geochemical variations between the closely spaced sites.
Resumo:
This study presents a systematic analysis and interpretation of autonomous underwater vehicle-based microbathymetry combined with remotely operated vehicle (ROV) video recordings, rock analyses and temperaturemeasurements within the PACManus hydrothermal area located on Pual Ridge in the Bismarck Sea of eastern Manus Basin. The data obtained during research cruise Magellan-06 and So-216 provides a framework for understanding the relationship between the volcanism, tectonismand hydrothermal activity. PACManus is a submarine felsic vocanically-hosted hydrothermal area that hosts multiple vent fields locatedwithin several hundredmeters of one another but with different fluid chemistries, vent temperatures and morphologies. The total area of hydrothermal activity is estimated to be 20,279m**2. Themicrobathymetrymaps combinedwith the ROV video observations allow for precise high-resolution mapping estimates of the areal extents of hydrothermal activity.We find the distribution of hydrothermal fields in the PACManus area is primarily controlled by volcanic features that include lava domes, thick andmassive blocky lava flows, breccias and feeder dykes. Spatial variation in the permeability of local volcanic facies appears to control the distribution of venting within a field.We define a three-stage chronological sequence for the volcanic evolution of the PACManus based on lava flow morphology, sediment cover and lava SiO2 concentration. In Stage-1, sparsely to moderately porphyritic dacite lavas (68-69.8 wt.% SiO2) erupted to form domes or cryptodomes. In Stage-2, aphyric lava with slightly lower SiO2 concentrations (67.2-67.9 wt.% SiO2) formed jumbled and pillowed lava flows. In the most recent phase Stage-3, massive blocky lavaswith 69 to 72.5wt.% SiO2were erupted throughmultiple vents constructing a volcanic ridge identified as the PACManus neovolcanic zone. The transition between these stages may be gradual and related to progressive heating of a silicic magma following a recharge event of hot, mantle-derived melts.
Resumo:
Postcruise X-ray diffraction (XRD) data for 95 whole-rock samples from Holes 1188A, 1188F, 1189A, and 1189B are presented. The samples represent alteration types recovered during Leg 193. The data set is incorporated into the shipboard XRD data set. Based on the newly obtained XRD data, distribution of alteration phases were redrawn for Ocean Drilling Program Sites 1188 and 1189.
Resumo:
Bright red "jasperoids" were recovered at three positions during Leg 193 drilling below Roman Ruins (Site 1189) in the PACMANUS hydrothermal field. These do not represent fossil exhalative oxide deposits equivalent to those associated with sulfide chimneys at the Roman Ruins seafloor. Rather, they constitute an integral, relatively early stage involving oxidized fluids in the development of veins and breccias that characterize the mostly sulfidic stockwork zone intersected below Roman Ruins in Hole 1189B. They formed by growth of quartz in open spaces created by hydrofracturing, the characteristic feature being mostly euhedral cores dusted by tiny hematite flakes. In one occurrence there are also frondlike aggregates and possible earlier cavity linings of hematite, overgrown by quartz, that potentially formed by maturation of ferruginous gels first deposited in the openings. The trace element geochemistry of the jasperoids, apart from minor enrichment in uranium, provides no indication that they represent subsurface conduits for fluids that deposit Fe-Mn-Si at the seafloor, though this remains a possibility for some such deposits.
Resumo:
The conventional model of leaching volcanic rocks as a source of metals in a seafloor hydrothermal systems has been tested by examining the behavior of Pb and other trace elements during hydrothermal alteration. ODP Leg 193 drill sites 1188 (Snowcap) and 1189 (Roman Ruins) on Pual Ridge in the eastern Manus Basin offshore eastern Papua New Guinea provide a unique three-dimensional window into an active back-arc hydrothermal system. We investigate by means of a LA-ICP-MS microbeam technique the capacity of Pb to be leached from a host volcanic rock exposed to various types and intensities of alteration. Our results are in general agreement with previous studies that utilized bulk analytical techniques but provide a more detailed explanation of the processes. Fresh representative dacitic lavas from the Pual Ridge have an average whole rock Pb content of 5.2 ppm, an average interstitial glass Pb content of 5.6 ppm and an average plagioclase Pb content of 1.0 ppm. Altered matrix samples have highly variable Pb values ranging from 0 to 52.4 ppm. High Pb values in altered samples are associated with a low temperature chlorite and clay mineral assemblage, in some cases overprinted by a high temperature (up to 350°C) silica-rich "bleaching" alteration. Only the most highly altered matrix samples have REE patterns that differ from the fresh Pual Ridge dacite. This may represent either different lava histories or alteration characteristics that have affected normally immobile REEs. Altered samples with the highest Pb values have similar REE patterns to those of the local unaltered lavas. They are compositionally similar to typical Pual Ridge dacites indicating a genetic relationship between the main regional volcanic suite and the subseafloor hydrothermally altered, Pb-enriched material. Relative loss/gain for Pb between the analyzed altered samples and a calculated precursor show a maximum relative gain of 901%. Samples with relative Pb gain from both drill sites are associated with lower temperature alteration mineral assemblages characterized by pervasive chloritization. The related lower temperature (220-250°C) neutral to slightly acidic fluids have been ascribed by others to return circulation of hydrothermal fluids that did not interact with seawater. Because altered samples have a higher Pb content than the fresh precursor, leaching of fresh volcanic rocks cannot be the source of Pb in the hydrothermal systems.