205 resultados para 191-1179D
Resumo:
During Ocean Drilling Program Leg 191, ~100 m of mid-Cretaceous igneous crust was cored at Site 1179 (41.08°N, 159.96°E), located within magnetic Anomaly M8 on the abyssal plain of the northwest Pacific Ocean near Shatsky Rise. Paleomagnetic data from this section are significant because they can constrain the mid-Cretaceous Pacific plate paleolatitude and paleomagnetic pole, both of which can be used to infer tectonic drift and other geodynamic processes. In this study, we analyzed the paleomagnetism of 122 samples from 40 flows in the Site 1179 basalt section. Comparison of inclination data among flows implies 13 independent measurements of the paleomagnetic field. Assuming a reversed magnetic polarity because of the site location within Anomaly M8, the data give a mean paleocolatitude of 88.1° ± 6.8° (corresponding to a paleolatitude of 1.9°N). The paleocolatitude is consistent with other mid-Cretaceous Pacific paleomagnetic data that indicate ~39° northward drift of the western Pacific plate since mid-Cretaceous time. Comparison of observed between-flow colatitude variance with that expected from secular variation data suggests that secular variation may not have been completely averaged with the 13 independent groups sampled at Site 1179. Colatitude scatter in the section is markedly less in the deepest 33 m of the hole, indicating a shift from rapidly erupted flows in the bottom ~33 m of the section to more slowly emplaced flows above.
Resumo:
Depth profiles of major element and rare earth element (REE) abundances in sediment samples (mainly siliceous ooze and clay) recovered from Holes 1179B and 1179C at Site 1179, Ocean Drilling Program Leg 191 (41.4°N, 159.6°E) were determined. The oxidation states of Mn and Ce were determined by X-ray absorption near-edge structure. Some geochemical indicators were tested, including the MnO/TiO2 ratios, a bivariate diagram of La/Ce vs. Al2O3/(Al2O3+Fe2O3), and other discrimination diagrams. The oxidation state of Mn is reduced Mn(II) in the depth profile below 0.60 meters below seafloor (mbsf), which is consistent with relatively low and high abundances of Mn in the sediments and pore waters, respectively. It is possible that the diagenetic effect on the oxidation state and abundance of Mn makes it difficult for the MnO/TiO2 ratio to reflect the depositional environment. The normalized ratio of La and Ce does not change very much with depth, suggesting that the diagenetic effect does not affect the REE signature in the sediments. On the diagram of La/Ce vs. Al2O3/(Al2O3+Fe2O3), the sediments studied here plot at the boundary of the pelagic and continental margin fields. This suggests that continental material has contributed to the sediment to some degree, even though Site 1179 is in a pelagic region of the northwestern Pacific Ocean, >1600 km from Japan.