520 resultados para 184-1143B
Resumo:
Site 1143 is located at 9°21.72'N, 113°17.11'E, at a water depth of 2772 m within a basin on the southern continental margin of the South China Sea. Three holes were cored at the site and combined into a composite (spliced) stratigraphic section that documents complete recovery for the upper 190.85 meters composite depth, the interval of advanced piston coring (Wang, Prell, Blum, et al., 2000, doi:10.2973/odp.proc.ir.184.2000; Wang et al., 2001, doi:10.1007/BF02907085). The early Pliocene to Holocene sediment sequence provided abundant and well-preserved calcareous microfossils and offered an excellent opportunity to establish foraminiferal stable isotope records. Here, we present benthic and planktonic d18O and d13C records that cover the last 5 m.y. These data sets will provide an important basis for upcoming studies to generate an orbitally tuned oxygen isotope stratigraphy and examine long- and short-term changes in deep and surface water mass signatures (temperature, salinity, and nutrients) with an average sample spacing of ~2.9 k.y. for the benthic and ~2.6 k.y. for the planktonic records.
Resumo:
The western warm pools of the Atlantic and Pacific oceans are a critical source of heat and moisture for the tropical climate system. Over the past five million years, global mean temperatures have cooled by 3-4 °C. Yet, current reconstructions of sea surface temperatures indicate that temperature in the warm pools has remained stable during this time. This stability has been used to suggest that tropical sea-surface temperatures are controlled by some sort of thermostat-like regulation. Here we reconstruct sea surface temperatures in the South China Sea, Caribbean Sea and western equatorial Pacific Ocean for the past five million years, using a combination of the Mg/Ca, TEXH86-and Uk'37 surface temperature proxies. Our data indicate that during the period of Pliocene warmth from about 5 to 2.6 million years ago, the western Pacific and western Atlantic warm pools were about 2 °C warmer than today. We suggest that the apparent lack of warming seen in the previous reconstructions was an artefact of low seawater Mg/Ca ratios in the Pliocene oceans. Taking this bias into account, our data indicate that tropical sea surface temperatures did change in conjunction with global mean temperatures. We therefore conclude that the temperature of the warm pools of the equatorial oceans during the Pliocene was not limited by a thermostat-like mechanism.