724 resultados para 162-985B


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Surface sediment samples from the Norwegian-Greenland Sea were investigated to reconstruct the spatial distribution of recent carbonate dissolution on the seafloor. Additionally, carbonate dissolution records of Ocean Drilling Program sites 985 and 987 are presented to outline the development of Pleistocene carbonate preservation. Today, well-preserved carbonate tests can be observed along the inflow of warm Atlantic surface water, extending as far as into the northernmost Norwegian-Greenland Sea. Increased dissolution is indicated along the continental margins and in the deepest parts of the Greenland Basin. Factors favoring carbonate preservation were found to be supersaturation of the water column with respect to calcium carbonate, high carbonate rain and probably excess alkalinity of bottom waters supplied by the arctic river discharge. Supralysoklinal dissolution is most important for recent carbonate dissolution in the Norwegian-Greenland Sea, whereas the deepest parts of the Greenland Basin reaches the calcite saturation horizon. Pleistocene dissolution records show some prominent peaks of extreme carbonate dissolution. During the Brunhes chron, carbonate dissolution maxima can be related to meltwater pulses, which probably inhibited deep-water formation in the Norwegian-Greenland Sea during deglaciation events. Long-term severe carbonate dissolution is evident during the late Matuyama chron. This can be probably related to low carbonate rain, due to a more eastwards located East Greenland Current and the nearly absence of the not yet polar adapted Neogloboquadrina pachyderma sin. during that period. Extreme dissolution events during the late Matuyama indicate strongly reduced deep-water formation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Greenland ice sheet is accepted as a key factor controlling the Quaternary glacial scenario. However, the origin and mechanisms of major Arctic glaciation starting at 3.15 Ma and culminating at 2.74 Ma are still controversial. For this phase of intense cooling Ravelo et al. proposed a complex gradual forcing mechanism. In contrast, our new submillennial-scale paleoceanographic records from the Pliocene North Atlantic suggest a far more precise timing and forcing for the initiation of northern hemisphere glaciation (NHG), since it was linked to a 2-3 °C surface water warming during warm stages from 2.95 to 2.82 Ma. These records support previous models, claiming that the final closure of the Panama Isthmus (3.0- ~2.5 Ma induced an increased poleward salt and heat transport. Associated strengthening of North Atlantic Thermohaline Circulation and in turn, an intensified moisture supply to northern high latitudes resulted in the build-up of NHG, finally culminating in the great, irreversible climate crash at marine isotope stage G6 (2.74 Ma). In summary, there was a two-step threshold mechanism that marked the onset of NHG with glacial-to-interglacial cycles quasi-persistent until today.