107 resultados para 16-157
Resumo:
Pliocene and Pleistocene planktonic foraminiferal biogeography and paleoceanography have been examined in Deep Sea Drilling Project (DSDP) sites of the Panama Basin (Pacific Ocean) and Colombian and Venezuelan Basins (Atlantic Ocean) to determine the timing of the isolation of Atlantic and Pacific tropical planktonic faunas resulting from the development of the Central American isthmus. Previous studies have suggested a late Miocene to middle Pliocene occurrence of this event. The Panama Basin (DSDP site 157) and the Colombian Basin (DSDP site 154A) share two early Pliocene biogeographic events: (1) great abundance of sinistral coiling Neogloboquadrina pachyderma at 4.3 m.y. ago at site 157 and 0.7 m.y. later at site 154A, and (2) a sinistral-to-dextral change in the coiling-direction preference in Pulleniatina 3.5 m.y. ago at both locations. Identification of these events farther to the east in the Venezuelan Basin (DSDP site 148) is complicated by insufficient lower Pliocene core recovery, but abundant sinistral N. pachydcrma appear to have extended far to the east in the Caribbean 3.6 m.y. ago; perhaps the early Pliocene abundance of this form is not indicative of cool water. The coiling-direction history and stratigraphic ranges of Pulleniatina became different in the Atlantic and Pacific Oceans during the early Pliocene; this is inferred to result from geographic isolation of the assemblages. Saito (1976) used the temporary disappearance of this genus from Atlantic waters at 3.5 m.y. ago to mark the closure of the Isthmus of Panama, but I show that in the Colombian Basin (site 154A) its disappearance was closer to 3.1 m.y. ago. This suggests the possibility of surface-water communication between the Atlantic and Pacific until that time.
Resumo:
Seventy four samples of DSDP recovered cherts of Jurassic to Miocene age from varying locations, and 27 samples of on-land exposed cherts were analyzed for the isotopic composition of their oxygen and hydrogen. These studies were accompanied by mineralogical analyses and some isotopic analyses of the coexisting carbonates. d18O of chert ranges between 27 and 39%. relative to SMOW, d18O of porcellanite - between 30 and 42%. The consistent enrichment of opal-CT in porcellanites in 18O with respect to coexisting microcrystalline quartz in chert is probably a reflection of a different temperature (depth) of diagenesis of the two phases. d18O of deep sea cherts generally decrease with increasing age, indicating an overall cpoling of the ocean bottom during the last 150 m.y. A comparison of this trend with that recorded by benthonic foraminifera (Douglas and Savin, 1975; http://www.deepseadrilling.org/32/volume/dsdp32_15.pdf) indicates the possibility of d18O in deep sea cherts not being frozen in until several tens of millions of years after deposition. Cherts of any Age show a spread of d18O values, increasing diagenesis being reflected in a lowering of d18O. Drusy quartz has the lowest d18O values. On-land exposed cherts are consistently depleted in 18O in comparison to their deep sea time equivalent cherts. Water extracted from deep sea cherts ranges between 0.5 and 1.4 wt %. dD of this water ranges between -78 and -95%. and is not a function of d18O of the cherts (or the temperature of their formation).
Resumo:
Evidence for the dissolution of biogenic silica at the base of pelagic sections supports the hypothesis that much of the chert formed in the Pacific derives from the dissolution and reprecipitation of this silica by hydrothermal waters. As ocean bottom waters flow into and through the crust, they become warmer. Initially they remain less saturated with respect to dissolved silica than pore water in the overlying sediments. With the diffusion of heat, dissolved ions, and to some extent the advection of water itself, biogenic silica in the basal part of the sedimentary section is dissolved. Upon conductively cooling, these pore waters precipitate chert layers. The most common thickness for the basal silica-free zone (20 m) lies below the most common height of the top of the chert interval above basement (50 m). This mode of chert formation explains the frequent occurrence of chert layers at very shallow subbottom depths in pelagic sections of the Pacific. It is also consistent with the common occurrence of cherts =150 m above basement.
Resumo:
By analogy with the present-day ocean, primary productivity of paleoceans can be reconstructed using calculations based on content of organic carbon in sediments and their accumulation rates. Results of calculations based on published data show that primary productivity of organic carbon, mass of phosphorus involved in the process, and content of phosphorus in ocean waters were relatively stable during Cenozoic and Late Mesozoic. Prior to precipitation on the seafloor together with biogenic detritus, dissolved phosphorus could repeatedly be involved in the biogeochemical cycle. Therefore, only less than 0.1% of phosphorus is retained in bottom sediments. Bulk phosphorus accumulation rate in ocean sediments is partly consistent with calculated primary productivity. Some epochs of phosphate accumulation also coincide with maxima of primary productivity and minima of the fossilization coefficient of organic carbon. The latter fact can testify to episodes of acceleration of organic matter mineralization and release of phosphorus from sediments leading to increase in the phosphorus reserve in paleoceans and phosphate accumulation in some places.
Resumo:
Miocene paleoceanographic evolution exhibits major changes resulting from the opening and closing of passages, the subsequent changes in oceanic circulation, and development of major Antarctic glaciation. The consequences and timing of these events can be observed in variations in the distribution of deep-sea hiatuses, sedimentation patterns, and biogeographic distribution of planktic organisms. The opening of the Drake Passage in the latest Oligocene to early Miocene (25-20 Ma) resulted in the establishment of the deep circumpolar current, which led to thermal isolation of Antarctica and increased global cooling. This development was associated with a major turnover in planktic organisms, resulting in the evolution of Neogene assemblages and the eventual extinction of Paleogene assemblages. The erosive patterns of two widespread hiatuses (PH, 23.0-22.5 Ma; and NH 1, 20-18 Ma) indicate that a deep circumequatorial circulation existed at this time, characterized by a broad band of carbonate-ooze deposition. Siliceous sedimentation was restricted to the North Atlantic and a narrow band around Antarctica. A major reorganization in deep-sea sedimentation and hiatus distribution patterns occurred near the early/middle Miocene boundary, apparently resulting from changes in oceanic circulation. Beginning at this time, deep-sea erosion occurred throughout the Caribbean (hiatus NH 2, 16-15 Ma), suggesting disruption of the deep circumequatorial circulation and northward deflection of deep currents, and/or intensification of the Gulf Stream. Sediment distribution patterns changed dramatically with the sudden appearance of siliceous-ooze deposition in the marginal and east equatorial North Pacific by 16.0 to 15.5 Ma, coincident with the decline of siliceous sedimentation in the North Atlantic. This silica switch may have been caused by the introduction of Norwegian Overflow Water into the North Atlantic acting as a barrier to outcropping of silica-rich Antarctic Bottom Water. The main aspects of the present oceanic circulation system and sediment distribution pattern were established by 13.5 to 12.5 Ma (hiatus NH 3), coincident with the establishment of a major East Antarctic ice cap. Antarctic glaciation resulted in a broadening belt of siliceous-ooze deposition around Antarctica, increased siliceous sedimentation in the marginal and east equatorial North Pacific and Indian Oceans, and further northward restriction of siliceous sediments in the North Atlantic. Periodic cool climatic events were accompanied by lower eustatic sea levels and widespread deep-sea erosion at 12 to 11 Ma (NH 4), 10 to 9 Ma (NH 5), 7.5 to 6.2 Ma (NH 6), and 5.2 to 4.7 Ma (NH 7).