522 resultados para 135-838B
Resumo:
In-situ proton-microprobe analyses are presented for glasses, plagioclases, pyroxenes, olivines, and spinels in eleven samples from Sites 834-836, 839, and 841 (vitrophyric rhyolite), plus a Tongan dacite. Elements analyzed are Mn, Ni, Cu, Zn, Ga, Rb, Sr, Y, Zr, Pb, and Sn (in spinels only). The data are used to calculate two sets of partition coefficients, one set based on the ratio of element in mineral/element in coexisting glass. The second set of coefficients, thought to be more robust, is corrected by application of the Rayleigh fractionation equations, which requires additional use of modal data. Data are presented for phenocryst core-rim phases and microphenocryst-groundmass phases from a few samples. Comparison with published coefficients reveals an overall consistency with those presented here, but with some notable anomalies. Examples are relatively high Zr values for pyroxenes and abnormally low Mn values in olivines and clinopyroxenes from Site 839 lavas. Some anomalies may reflect kinetic effects, but interpretation of the coefficients is complicated, especially in olivines from Sites 836 and 839, by possible crystal-liquid disequilibrium resulting from mixing processes.
(Table 4) Partition coefficients for orthopyroxene of ODP Hole 135-839B vitrophyric rhyolite samples
Resumo:
A middle Eocene to lower Oligocene sedimentary sequence was drilled at Site 841 in the Tonga forearc region during Ocean Drilling Program Leg 135. A 56-m-thick sequence of volcanic sandstone, spanning from Cores 135-841B-4IR to -47R (549.1 to 605 mbsf), unconformably overlies rhyolitic volcanic basement. The middle Eocene planktonic foraminifer assemblages (P Zone?), which occur in association with larger benthic foraminifers, include spinose species of Acarinina, Morozovella, and Truncorotaloides, but their abundance is low. Late Eocene and early Oligocene faunas are abundant and show the highest diversity of the Paleogene sequence drilled at this site. They have been assigned to Zones P15-16 and P18, respectively. The Eocene/Oligocene boundary was not recognized because of a hiatus in which Zone P17 (37.2-36.6 Ma) was missing. Another hiatus is recorded in the interval between the middle and late Eocene, spanning at least 1.8 Ma. Paleogene assemblages of Site 841 contain equal numbers of warm- and cool-water species, an attribute of the warm middle-latitude Paleogene fauna of the Atlantic Ocean. In particular, common to high abundances of cool-water taxa, such as Globorotaloides, Catapsydrax, Tenuitella, and small globigerinids, may be related to the opening of a shallow seaway south of Tasmania permitting the influx of cool Indian Ocean waters into the South Pacific before the late Eocene (approximately 37 Ma).
Resumo:
We use Nomarski differential interference contrast imaging to reveal the wealth of complex detail in plagioclase zoning for selected samples from Sites 834, 839, and 841. All sites contain some plagioclase with the very complex internal core zoning, convolute zoning, or very fine-scale euhedral oscillatory zoning of the sort generally considered typical of island-arc volcanic rocks. Plagioclase with contrasted zoning styles may coexist within a single lithologic unit or even within a single thin section. Especially notable is the presence of scattered plagioclase phenocrysts with complex zoning throughout Unit 7 in Hole 834B, which in other respects is relatively uniform in composition and appears to have had little or no differential sorting of crystals and liquid. Although our study is by no means comprehensive, it is sufficient to indicate that magmatic conditions have been variable during crystallization of these rocks, and mixing or at least minor contamination may be required to explain some of the relations observed. By analogy with experimental studies, it is possible that variations in water content, either over time or within different parts of a chamber or conduit system, have contributed to the observed contrasts in zoning.
Resumo:
The sedimentary sequence recovered at Site 840, on the Tonga frontal-arc platform, is 597.3 m thick and is subdivided into three lithostratigraphic units. The lowermost, late Miocene Unit III is 336.8 m thick and consists of a sequence of volcaniclastic mass-flow deposits (predominantly turbidites) interbedded with pelagic/hemipelagic deposits. Unit III was deposited in the forearc basin of the Lau volcanic arc, probably on a slope dominated by mass flows that built eastward from the ridge front and across the forearc. Upward through the unit a thinning and fining of individual turbidites takes place, interpreted to reflect a reduced sediment supply and a change from large to smaller flows. Decreasing volcanic activity with time is inferred from a decrease in coarse-grained volcaniclastic content in the upper part of the unit. The majority of the turbidites show the typical Bouma-type divisions, although both high- and low-density turbidity currents are inferred. High-density turbidity currents were especially common in the lower part of the unit. Geochemical analyses of detrital glass lie mainly in the low-K tholeiite field with a compositional range from basalt to rhyolite. A coherent igneous trend indicates derivation from a single volcanic source. This source was probably situated on the rifted part of the Lau-Tonga Ridge, within the present Lau backarc basin. The initial opening of the Lau Basin may have been around 6.0 m.y. ago. The onset of more extensive rifting, approximately 5.6 m.y. ago, is reflected in an increase in the silica content of volcanic glass. At the boundary toward Unit II, at approximately 5.25 Ma, an influx of thicker bedded and coarser grained volcaniclastic material is interpreted to reflect increasing volcanism and tectonism during the final breakup of the Lau-Tonga Ridge.