504 resultados para 130-804


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Planktonic foraminiferal oxygen isotope records from the western and eastern tropical Pacific and Atlantic Oceans suggest a southward shift in the Intertropical Convergence Zone toward its modern location between 4.4 and 4.3 Ma. A concomitant shift in the carbon isotope compositions of Atlantic benthic foraminifera provides strong evidence for an increased thermohaline overturn at this time. We suggest that the southward shift of the Intertropical Convergence Zone and associated change in trade-wind circulation altered equatorial surface hydrography, increased the advection of warmer and more saline surface waters into the subtropical and North Atlantic, and contributed to thermohaline overturn.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Little is known about the fluxes to and from the ocean during the Cenozoic of phosphorus (P), a limiting nutrient for oceanic primary productivity and organic carbon burial on geologic timescales. Previous studies have concluded that dissolved river fluxes increased worldwide during the Cenozoic and that organic carbon burial decreased relative to calcium carbonate burial and perhaps in absolute terms as well. To examine the apparent contradiction between increased river fluxes of P (assuming P fluxes behave like the others) expected to drive increased organic carbon burial and observations indicating decreased organic carbon burial, we determined P accumulation rates for equatorial Pacific sediments from Ocean Drilling Program leg 138 sites in the eastern equatorial Pacific and leg 130 sites on the Ontong Java Plateau in the western equatorial Pacific. Although there are site specific and depth dependent effects on P accumulation rates, there are important features common to the records at all sites. P accumulation rates declined from 50 to 20 Ma, showed some variability from 20 to 10 Ma, and had a substantial peak from 9 to 3 Ma centered at 5-6 Ma. These changes in P accumulation rates for the equatorial Pacific are equivalent to substantial changes in the P mass balance. However, the pattern resembles neither that of weathering flux indicators (87Sr/86Sr and Ge/Si ratios) nor that of the carbon isotope record reflecting changes in organic carbon burial rates. Although these P accumulation rate patterns need confirmation from other regions with sediment burial significant in global mass balances (e.g., the North Pacific and Southern Ocean), it appears that P weathering inputs to the ocean are decoupled from those of other elements and that further exploration is needed of the relationship between P burial and net organic carbon burial.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The calcium isotopic compositions (d44Ca) of 30 high-purity nannofossil ooze and chalk and 7 pore fluid samples from ODP Site 807A (Ontong Java Plateau) are used in conjunction with numerical models to determine the equilibrium calcium isotope fractionation factor (a_s-f) between calcite and dissolved Ca2+ and the rates of post-depositional recrystallization in deep sea carbonate ooze. The value of a_s-f at equilibrium in the marine sedimentary section is 1.0000+/-0.0001, which is significantly different from the value (0.9987+/-0.0002) found in laboratory experiments of calcite precipitation and in the formation of biogenic calcite in the surface ocean. We hypothesize that this fractionation factor is relevant to calcite precipitation in any system at equilibrium and that this equilibrium fractionation factor has implications for the mechanisms responsible for Ca isotope fractionation during calcite precipitation. We describe a steady state model that offers a unified framework for explaining Ca isotope fractionation across the observed precipitation rate range of ~14 orders of magnitude. The model attributes Ca isotope fractionation to the relative balance between the attachment and detachment fluxes at the calcite crystal surface. This model represents our hypothesis for the mechanism responsible for isotope fractionation during calcite precipitation. The Ca isotope data provide evidence that the bulk rate of calcite recrystallization in freshly-deposited carbonate ooze is 30-40%/Myr, and decreases with age to about 2%/Myr in 2-3 million year old sediment. The recrystallization rates determined from Ca isotopes for Pleistocene sediments are higher than those previously inferred from pore fluid Sr concentration and are consistent with rates derived for Late Pleistocene siliciclastic sediments using uranium isotopes. Combining our results for the equilibrium fractionation factor and recrystallization rates, we evaluate the effect of diagenesis on the Ca isotopic composition of marine carbonates at Site 807A. Since calcite precipitation rates in the sedimentary column are many orders of magnitude slower than laboratory experiments and the pore fluids are only slightly oversaturated with respect to calcite, the isotopic composition of diagenetic calcite is likely to reflect equilibrium precipitation. Accordingly, diagenesis produces a maximum shift in d44Ca of +0.15? for Site 807A sediments but will have a larger impact where sedimentation rates are low, seawater circulates through the sediment pile, or there are prolonged depositional hiatuses.