845 resultados para 112-681B
Resumo:
The main objectives of this study are (1) to characterize the spatial and temporal variations in organic matter deposited in upwelling and related sediments (manifest in the palynoclast and organic-walled microplankton assemblages) and (2) to relate these variations to paleoenvironmental changes. A total of 40 samples from Holes 679D, 680B, 681B, 684B, 686B, and 687B were analyzed. Without exception, amorphogen dominates the palynoclast assemblages overwhelmingly. Influx of terrestrial particulate organic matter to the marine realm was extremely low. Levels of amorphogen swamp other palynoclast categories, and little significance can be attached to any variations observed. Microplankton dominate the palynomorph assemblages, with variable levels of subordinate foraminiferal test linings. Miospores are rare and are absent in most samples. Foraminiferal test linings are particularly abundant in the shallowest samples, which may reflect low surface-water paleotemperatures. Cysts of heterotrophic peridiniacean dinoflagellates (P-cysts) dominate the microplankton assemblages, with variable levels of cysts of autotrophic gonyaulacacean dinoflagellates (G-cysts). Samples dominated by P-cysts are derived largely from laminated, unbioturbated units deposited under the influence of strong upwelling. A lower abundance of P-cysts in some samples is restricted to unlaminated, bioturbated units deposited under oxygenated conditions. We conclude that the ratio of P-cysts to G-cysts is a useful indicator of variable upwelling strength. Detailed study of the variations in the microplankton assemblages offers one the greatest potential for palynological characteriztion and understanding of the upwelling system.
Resumo:
Indicators of surface-water productivity and bottom-water oxygenation have been studied for the age interval from the latest Pleistocene to the Holocene at three holes (679D, 680B, and 68IB) located in the center and at the edges of an upwelling cell at approximately 11°S on the Peruvian continental margin. Upwelling activity was maximal at this latitude during d18O Stages 1 (lower part), 3, the upper part of 5, the lower part of 6, and 7, as documented by high diatom abundance. During these time intervals, the bottom water was poorly oxygenated, as documented by low diversity benthic foraminiferal assemblages that are dominated by B. seminuda s.l. Both surface- and bottom-water-circulation patterns appear to have changed rapidly over short time intervals. Due to changes in surface circulation, the intensity of upwelling decreased, thereby decreasing the concentration of nutrients, and reducing the supply of organic matter to the bottom. Radiolarians became more abundant in the surface waters, and the bottom-water environment was less depleted in oxygen, allowing for the establishment of more diverse benthic foraminiferal assemblages. Surface-water productivity was probably minimal during the early part of d18O Stages 5 and 9, as indicated by the increased abundance of planktonic foraminifers and pteropods and their subsequent preservation.
Resumo:
Organic-rich diatomaceous muds from Ocean Drilling Program Leg 112 (offshore Peru) are the subject of a comprehensive organic diagenetic study covering the burial interval, <1 to >100 m. The organic matter has been classified in terms of its elemental, biochemical, and geochemical compositions. About 60% of the organic carbon in sediments from <1 m can be attributed to hydrolyzable, biochemical constituents, while at 22 m this figure decreased to 20%. Pyrolysis-gas chromatography and gas chromatography-mass spectrometry chromatograms of these same sediments contain mainly hydrocarbons and nitrogenous compounds, with low amounts of other heteroatomic compounds, even though the total organic matter is rich in oxygen (about 35 atoms per 100 carbon atoms) and sulfur (1 to 5 atoms per 100 C atoms). Overall, the organic matter in these sediments, even at these shallow depths and young ages, has many of the geochemical features of far more deeply buried sediments, providing further strong evidence for the claim that "kerogen-formation" is a very early diagenetic process.
Resumo:
Two distinct hydrogeochemical regimes currently dominate the Peruvian continental margin. One, in shallower water (150-450 m) shelf to upper-slope regions, is characterized by interstitial waters with strong positive chloride gradients with depth. The maximum measured value of 1043 mM chloride at Site 680 at ITS corresponds to a degree of seawater evaporation of ~2 times. Major ion chemistry and strontioum isotopic composition of the interstitial waters suggest that a subsurface brine that has a marine origin and is of pre-early Miocene "age," profoundly influences the chemistry and diagenesis of this shelf environment. Site 684 at ~9°S must be closest to the source of this brine, which becomes diluted with seawater and/or interstitial water as it flows southward toward Site 686 at ~13?S (and probably beyond) at a rate of approximately 3 to 4 cm/yr, since early Miocene time. The other regime, in deep water (3000-5000 m) middle to lower-slope regions, is characterized by interstitial waters with steep negative and nonsteady-state chloride gradients with depth. The minimum measured value of 454 mM chloride, at Site 683 at ITS, corresponds to ~20% dilution of seawater chloride The most probably sources of these low-chloride fluids are gas hydrate dissociation and mineral (particularly clay) dehydration reactions. Fluid advection is consistent with (1) the extent of dilution shown in the chloride profiles, (2) the striking nonsteady-state depth profiles of chlorides at Sites 683 and 688 and of 87Sr/86Sr ratios at Site 685, and (3) the temperatures resulting from an average geothermal gradient of 50°C/km and required for clay mineral dehydration reactions. Strontium isotope data reveal two separate fluid regimes in this slope region: a more northerly one at Sites 683 and 685 that is influenced by fluids with a radiogenic continental strontium signature, and a southerly one at Sites 682 and 688 that is influenced by fluids with a nonradiogenic oceanic signatures. Stratigraphically controlled fluid migration seems to prevail in this margin. Because of its special tectonic setting, Site 679 at ITS is geochemically distinct. The interstitial waters are characterized by seawater chloride concentrations to -200 mbsf and deeper by a significantly lower chloride concentration of about two-thirds of the value in seawater, suggesting mixing with a meteoric water source. Regardless of the hydrogeochemical regime, the chemistry and isotopic compositions of the interstitial waters at all sites are markedly modified by diagenesis, particularly by calcite and dolomite crystallization.
Resumo:
At the Peruvian convergent margin, two distinct pore fluid regimes are recognized from differences in their Cl- concentrations. The slope pore fluids are characterized by low Cl- concentrations, but elevated Br- and I- concentrations due to biogenic production. The shelf pore fluids exhibit elevated Cl- and Br- concentrations due to diffusive mixing with an evaporitic brine. In the slope pore fluids, the Br-, I-, and NH4+ concentrations are elevated following bacterial decomposition of organic matter, but the I- concentrations are in excess of those expected based on mass balance calculations using NH4+ and Br- concentrations. The slope sediment organic matter, which is enriched in iodine from oxidationreduction processes at the oxygenated sediment-water interface, is responsible for this enrichment. The increases in dissolved I- and the I- enrichments relative to NH4+ and Br- correlate well with sedimentation rates because of differential trapping following regeneration. The pore-fluid I-/Br- ratios suggest that membrane ion fiitration is not a major cause of the decreases in Cl- concentrations. Other possible sources for low Cl- water, including meteoric water, clathrate dissociation, and/or mineral dehydration reactions, imply that the diluting component of the slope low-Cl- fluids has flowed at least 1 km through the sediment. The low bottom-water oxygenation in the shelf is responsible for the low (if any) enrichment of iodine in the shelf sediments. Fluctuations in bottom-water oxygen concentrations in the past, however, may be responsible for the observed variations in the sediment I/Br ratios. Comparison of Na+/Cl- and Br-/Cl- molar ratios in the pore fluids shows that the shelf high-Cl- fluid formed from mixing with a brine that formed from seawater concentrated by twelve to nineteen times and probably was modified by halite dissolution. This dense brine, located below the sediment sections drilled, appears to have flowed a distance >500 km through the sediment.